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Abstract

Metabolite quantitative traits carry great promise for epidemiological studies, and their genetic background has been addressed
using Genome-Wide Association Studies (GWAS). Thus far, the role of less common variants has not been exhaustively studied. Here,
we set out a GWAS for metabolite quantitative traits in serum, followed by exome sequence analysis to zoom in on putative causal
variants in the associated genes. 1H Nuclear Magnetic Resonance (1H-NMR) spectroscopy experiments yielded successful
quantification of 42 unique metabolites in 2,482 individuals from The Erasmus Rucphen Family (ERF) study. Heritability of
metabolites were estimated by SOLAR. GWAS was performed by linear mixed models, using HapMap imputations. Based on
physical vicinity and pathway analyses, candidate genes were screened for coding region variation using exome sequence data.
Heritability estimates for metabolites ranged between 10% and 52%. GWAS replicated three known loci in the metabolome wide
significance: CPS1 with glycine (P-value = 1.27610232), PRODH with proline (P-value = 1.11610219), SLC16A9 with carnitine level
(P-value = 4.81610214) and uncovered a novel association between DMGDH and dimethyl-glycine (P-value = 1.65610219) level. In
addition, we found three novel, suggestively significant loci: TNP1 with pyruvate (P-value = 1.2661028), KCNJ16 with
3-hydroxybutyrate (P-value = 1.6561028) and 2p12 locus with valine (P-value = 3.4961028). Exome sequence analysis identified
potentially causal coding and regulatory variants located in the genes CPS1, KCNJ2 and PRODH, and revealed allelic heterogeneity
for CPS1 and PRODH. Combined GWAS and exome analyses of metabolites detected by high-resolution 1H-NMR is a robust
approach to uncover metabolite quantitative trait loci (mQTL), and the likely causative variants in these loci. It is anticipated that
insight in the genetics of intermediate phenotypes will provide additional insight into the genetics of complex traits.
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Introduction

Intermediary metabolites in bodily fluids seem a direct

reflection of our genetic constituency in interaction with the

environment, which includes eating habits, life style and other

external factors. Thus, the use of metabolomic phenotypes in

genetic epidemiological studies may provide specific insight in

pathways underlying complex metabolic diseases, such as type 2

diabetes mellitus (T2D), stroke or cardiovascular disease (CVD)

but also other complex diseases such as rheumatoid arthritis,

migraine and depression [1–3]. The sample sizes in the first

genome-wide association studies (GWAS) of metabolite quanti-

tative traits were in general relatively small compared to GWAS

on traditional phenotypes, yet revealed strong signals for

association of common variants with specific metabolites.

Single-proton Nuclear Magnetic Resonance (1H-NMR) spectros-

copy is a metabolomics technique that requires relatively little

sample preparation, yet has the capacity to reproducibly quantify

dozens to more than 100 metabolite signals per measurement.

Several studies have reported genetic loci that influence the
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metabolites quantified by 1H-NMR in plasma and urine [4-7].

Here, we present the results of 42 plasma metabolites quantified

by 1H-NMR spectroscopy in 2,482 individuals of the family-

based Erasmus Rucphen Family (ERF) study, a Dutch genetic

isolate. We estimated the heritability and the effect of shared

environment (household effect) for these metabolites. The GWA

was followed by high-resolution analysis of coding variants in the

candidate genes that were identified by physical proximity and

pathway analysis. To provide further insight into the pathogenesis

of cardio-metabolic diseases, we also investigated the association

between the NMR metabolites and the classical risk factors for

CVD and T2D.

Results

Heritability estimates and GWAS results
The study was conducted in the ERF population (see S1 Table)

using fasting serum samples. After quality filtering, we resolved 42

metabolites, for which the identity was confirmed by the typical

chemical shifts of the related peaks, their high correlation with

other peaks and spiking of pure compounds in serum (S2 Table).

Heritability estimates of the metabolites were moderate to high

ranging from 10% to 52% whereas estimates for the shared

environmental effect ranged from 0% to 8% (Fig. 1). The highest

heritability is observed for citrate (52%), followed by phenylalanine

(51%), ornithine (47%) and methanol (45%) whereas the lowest

heritability estimate was 10% for 3-hydroxybutyrate. We per-

formed genome-wide association (GWA) analysis for all metabolite

SNP pairs, including 2.5 M SNPs from the HapMap2 reference

panel, see S1 Fig. for the Q-Q plots of the 42 metabolites. In total,

we found eight unique genomic loci that associated with NMR

metabolites below the genome-wide significant P-value threshold

(P-value ,5.061028) as shown in the Manhattan plot (Fig. 2).

Regional plots of the 8 loci are shown in S2 Fig.. Four of these loci

were also significant after correction for the number of metabolites

analyzed (P-value ,1.1061029) and three of these were previously

shown to associate with the same metabolites: rs715 located in the

39UTR of the carbamoyl-phosphate synthase 1 (CPS1) gene

associated with glycine level (P-value = 1.27610232) [8],

rs2540641 35 Kb distant from proline dehydrogenase (oxidase) 1

(PRODH) gene (P-value = 1.11610219) associated with proline

levels [9] and rs1171614 in the 5’UTR of SLC16A9 (solute carrier

family 16, member 9) associated with carnitine level (P-value

= 4.81610214) [9–11]. The association between intronic SNP

rs248386 within DMGDH (dimethyl-glycine dehydrogenase) and

dimethyl-glycine level is a novel finding (P-value = 1.65610219).

This locus has also been associated with betaine, which is a closely

related metabolite [8].

Four other suggestively significant loci were uncovered by our

analyses (5.061028.P-value.1.1061029). One of these has

previously been identified in urine: the association between

rs8056893 within the SLC7A9 (solute carrier family 7 member

9) and lysine (P-value = 1.2661028) [12]. Three novel associations

were found (1) rs1922005 located inside the TNP1 (transition

protein 1) gene and pyruvate level (P-value = 1.2661028), (2)

rs9896573 located nearby KCNJ16 (potassium inwardly-rectifying

channel, subfamily J, member 16) and 3-hydroxybutyrate level (P-

value = 1.6561028) (3) rs11687765 located in a non-protein

coding region on chromosome 2 and valine level, (P-value

= 3.4961028). For the 8 top loci, we also investigated the mode of

inheritance. The model supervised analysis in those regions of

interest shows that the recessive genetic model applies successfully

for six of the effect alleles: rs715 (CPS1) on glycine, rs1922005

(TNP1) on pyruvate rs248386 (DMGDH) on dimethyl-glycine,

rs1171614 (SLC16A9) on carnitine, rs8056893 (SLC7A9) on

lysine and rs2540641 (PRODH) on proline. For rs11687765

(intergenic on chromosome 2) affecting valine, the mode of

inheritance seems to be dominant for the effect allele. For

rs9896573 (KCNJ16) affecting 3-hydroxybutyrate, the over-

dominant model resulted in the strongest association among the

models tested.

Fine mapping within the candidate genes. In the same

study population exome sequences of 921 individuals from the

ERF pedigree were analyzed for potentially causal SNPs in

biologically plausible genes which were extracted using an

automated workflow, within the top eight GWAS loci in Table 1.

The outputs of the automated workflow are given in S1 Text. In

addition to coding region variation, a number of intronic variants

that were captured around the intron-exon connections, as well as

nearby 5’UTR and 39UTR variants were captured by sequencing

and those were also included in analysis. This approach revealed

in total seven independent SNPs with potentially causal effects

located inside CPS1, KCNJ2 (potassium inwardly-rectifying

channel, subfamily J, member 2), PRODH and SLC25A1 (solute

carrier family 25 member 1) (Table 2). More precisely, for glycine

we found evidence for two independent effects within the CPS1
gene. First, the missense mutation Thr1412Asn (rs1047891) within

CPS1 is the most likely causal variant tagged by the GWAS SNP

rs715, due to the high LD (R2 = 0.92) and large drop in P-values

after conditioning the SNP-metabolite associations for each other.

Second, we found three intronic variants in strong LD with each

other (R2.0.89) in CPS1 that independently associated with

glycine (lowest P-value = 2.5561025 for rs182548513, Table 2)

when conditioned on the leading GWAS SNP. For 3-hydroxybu-

tyrate, we found that rs173135 located 39UTR of KCNJ2 gene is

most likely the causal SNP (P-value = 1.01610207) influencing the

circulating level of this metabolite. Rs173135 is in strong LD with

the leading GWAS SNP (R2 = 0.72) showed a large drop in P-

value, yet remained significant in the conditional analysis (P-value

= 0.002). For proline, in total, we observed four independent

effects within the PRODH locus including one missense mutation

Thr116Asn (rs5747933, P-value = 1.8261029), two intronic

Author Summary

Human metabolic individuality is under strict control of
genetic and environmental factors. In our study, we aimed
to find the genetic determinants of circulating molecules
in sera of large set of individuals representing the general
population. First, we performed a hypothesis-free genome
wide screen in this population to identify genetic regions
of interest. Our study confirmed four known gene
metabolite connections, but also pointed to four novel
ones. Genome-wide screens enriched for common inter-
genic variants may miss causal genetic variations directly
changing the protein sequence. To investigate this further,
we zoomed into regions of interest and tested whether the
association signals obtained in the first stage were direct,
or whether they represent causal variations, which were
not captured in the initial panel. These subsequent tests
showed that protein coding and regulatory variations are
involved in metabolite levels. For two genomic regions we
also found that genes harbour more than one causal
variant influencing metabolite levels independent of each
other. We also observed strong connection between
markers of cardio-metabolic health and metabolites. Taken
together, our novel loci are of interest for further research
to investigate the causal relation to for instance type 2
diabetes and cardiovascular disease.

Genetic Variants Influencing NMR Metabolome
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SNPS (rs1076466, P-value = 6.3461024 and rs3213491, P-value

= 7.4861024) and one (semi-)independent SNP rs13058335 (R2

= 0.66 with the leading GWAS SNP), explaining the GWAS

finding with a conditional P-value = 1.2061025. We also found

significant coding variations associated with dimethyl-glycine,

carnitine, pyruvate and lysine however all those signals vanished

after adjustment by the leading GWAS SNP, indicating that these

associations so far are best explained by the leading GWAS hits in

these regions (S3 Table).

eQTL and functional effects. We used the GTEX and

GEUVADIS [13] databases to check if the significantly associated

SNPs affect cis gene expression. We obtained evidence that the

leading GWAS SNP for carnitine (rs1171614) influenced the

expression of SLC16A9 in lymphoblasts (P-value = 8.9161026)

and rs8056893 (associated with lysine) influenced the expression of

ZPF90 in lymphoblasts (P-value = 4.0161026) and SLC7A9 in

thyroid cells (P-value = 0.00008). Rs248386 (associated with

dimethyl-glycine) associated with the expression of BHMT
(betaine—homocysteine S-methyltransferase) in the tibial nerve

(P-value = 0.000066). One of the missense variants; Thr1412Asn

(rs1047891) in CPS1 predicted to be ‘‘tolerated’’ by SIFT and

‘‘benign’’ by Polyphen functional predictions. The other missense

variant Thr116Asn (rs5747933) on PRODH predicted to be

‘‘tolerated’’ by SIFT and ‘‘possibly damaging’’ by Polyphen.
Correlation with classical risk factors. Within the ERF

population, we found that BMI correlated positively with carnitine

(r = 0.136, P-value = 4.40610211), proline (r = 0.123, P-value

= 2.8061029), pyruvate (r = 0.240, P-value = 5.40610232), lysine

(r = 0.132, P-value = 1.45610210), and valine (r = 0.383, P-value

= 2.05610282) (S4-A Table), whereas BMI correlated negatively

with glycine (r = 20.178, P-value = 4.19610218). After additional

adjustment for BMI, we observed that pyruvate, lysine and valine

correlated positively with risk factors of T2DM, whereas glycine

correlated negatively with triglycerides and C-reactive protein

(CRP) (S4-B Table). Dimethyl-glycine particularly correlated with

measures of kidney function; uric acid (r = 0.21, P-value

= 2.4261029), glomerular filtration rate (eGFR) (r = 20.14, P-

value = 2.53610210), urea (r = 0.18, P-value = 1.2061027), and

creatinine (r = 0.22, P-value = 1.35610222).

We also explored possible relationships between the eight

mQTL and the classical risk factors. Among the metabolites which

associate with BMI, none of the mQTLs were associated with BMI

itself in the ERF population. In addition, the association of the

mQTLs with the metabolites glycine, carnitine, proline, pyruvate,

Fig. 1. Heritability and sibship effects on the NMR metabolites. Figure shows the magnitude of heritability (H2) and sibship (household) effect
estimates for each metabolic trait included in the ERF population.
doi:10.1371/journal.pgen.1004835.g001

Fig. 2. GWAS results of the NMR metabolites. Figure shows the aggregated Manhattan plot for the 42 metabolites studied. Red line shows the
suggestive genome-wide significance level with a P-value of 561028.Loci harbouring DMGDH, SLC16A9, PRODH and CPS1 are reported as
metabolome wide significance.
doi:10.1371/journal.pgen.1004835.g002

Genetic Variants Influencing NMR Metabolome
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lysine and valine did not change after adjustment for BMI (S5

Table). Interestingly, only for rs11687765 (valine-QTL) associa-

tion with risk factors reached nominally significant P-values:

specifically glucose (P-value = 0.013), HOMA, insulin resistance

(P-value = 0.049) and gynoid fat mass (P-value = 0.003).

Association of rs11687765 with HOMA-insulin resistance dropped

when adjusted by the valine level itself (P-value = 0.122).

Discussion

In this study, we report on the heritability, GWAS, candidate

genes and fine genetic mapping of 42 metabolites identified and

quantified using 1H-NMR spectroscopy in the Erasmus Rucphen

Family (ERF) study. In 2009, the first GWAS of metabolites

identified by 1H-NMR spectroscopy measured in human plasma

was reported by Chasman et al. [4]. This study focused primarily

on lipoprotein particle size and content, and did not measure other

metabolites such as organic acids and amino acids, yet reported 43

significant metabolite mQTL. This was followed by three reports

on blood and urine samples [5,6] the largest of which by

Kettunnen et al. involving both small metabolites and lipoprotein

particle sizes, reporting 31 novel mQTL [7]. Recently, Rueedi et
al. reported one novel locus using an untargeted approach [12].

Here, we used 1H-NMR J-Resolved 2D spectrometry followed by

spiking experiments, yielding a reliable certain metabolite

identification. Traditional CVD traits in ERF and other cohorts

in general show a heritability ranging from 20% to 30% [14]. In

the present study, we observed a similar distribution of heritability

for NMR detected metabolites, ranging from 10% to 52%. These

heritability estimates seem somewhat lower than those found in

the NMR GWAS by Kettunen et al. [7]. However, in that report a

significant proportion of the reported NMR traits and heritability

estimates concern lipoprotein particle characteristics. Since, in

general, heritability for lipoproteins is high [7], ranging from 30%

to 50%, this could explain the apparent discrepancy with our

reported heritability data.

Using verified metabolites, we replicated three known loci and

uncovered a novel association for dimethyl-glycine in the vicinity

of the biologically plausible genes DMGDH and BHMT. This was

expected since our study had 62 to 100% power to detect genetic

variants with 0.2 to 0.5 effect size with metabolome-wide

significant P-value (1.161029) for a bi-allelic marker with 0.3

MAF (for instance rs715 in CPS1) based on the assumption of

complete LD with the causal genetic variant. For more rare

variants with larger effect size such as rs248386 in DMDGH with

0.15 MAF and 0.4 effect size the power on metabolome wide

significance was 100%. Furthermore, we report suggestive

common genetic variants; first in an intergenic region on

chromosome 2 for valine, second in TNP1 for pyruvate and lastly

in KCNJ16 for 3-hydroxybutyrate levels. Analysis of the coding

sequence in the candidate genes uncovered potentially causal

signals within CPS1, KCNJ2 and PRODH that explain the

GWAS hits, as well as additional independent signals located in

CPS1 and PRODH indicating allelic heterogeneity within these

genes. Among the eight mQTL, rs715 in CPS1 explained the

highest (10%)of the total phenotypic variance in circulating glycine

levels (Table 1).This was higher than the total explained variance

in for glycine level by age and sex. (S6 Table).

The CPS1 locus has been previously found associated with

kidney disease, homocysteine, and several metabolite levels

including glycine. CPS1 mutations are known to cause carba-

moylphosphate synthetase I deficiency, an autosomal recessive

inborn error of metabolism of the urea cycle which causes

hyperammonemia. The disease may also have a delayed onset in
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adulthood and is associated with chronic kidney disease. Gene-

network predictions for this gene included functions such as

triglycerides (TG) and lipoprotein homeostasis. In our study, we

also found association of the same SNP with creatine level and also

observed a significant correlation between creatine and glycine

(r = 0.08, P-value = 1.4661024), glomerular filtration rate (r = 2

0.09, P-value = 7.0761025) and TG (r = 20.08, P-value

= 1.1561024). We identified Thr1412Asn in CPS1 as a potential

variant that may alter the protein function. The second

independent signal within CPS1 was located intronic

(rs182548513). The neighbouring SNP, rs147937942, (Table 2)

in LD with rs182548513 is located on 59UTR of a CPS1
transcript variant (CPS1-001), and identified as transcription

factor binding site according to the ENCODE database however,

so far we did not find any evidence that the SNP affects expression

which may be tissue specific.

The second locus, PRODH, a gene highly expressed in cerebral

cortex, cerebrum and other brain tissues is known to be involved

in proline metabolism, but also in central nervous system

myelination. The locus was previously shown to associate with

schizophrenia [15] and autism [16]. We show in total 4

independent SNPs that associate with circulating proline level;

including (1) the GWAS hit, (2) one very common SNP (tagged by

rs2008720), (3) a possibly damaging missense mutation with low

frequency (MAF = 0.03, Thr167Asn) and (4) another with MAF

= 0.05 (rs3213491). It is important to mention that rs2008720

maps to first exon of PRODH (PRODH-001 isoform) resulting

the amino-acid change Pro19Gln, whereas it also maps to the

promoter regulatory region of another PRODH isoform

(PRODH-004). Neither for these variants did we find experimen-

tal evidence from eQTL database.

DMGDH codes for the enzyme dimethyl-glycine dehydrogenase

which is involved in catabolism of choline, catalyzing the oxidative

demethylation of dimethyl-glycine to form sarcosine. The gene is

highly expressed in liver, followed by kidney. Mutations in this

gene cause an inborn error of metabolism characterized by

unusual fish-like body odour. Functional predictions for this gene

by KEGG database include several functions in amino-acid

metabolism and bile acid synthesis. Conditional analysis in this

region showed that the GWAS hit located intronic in DMGDH
(rs248386) is most likely the causal variant. Interestingly we found

this SNP associated with the expression of the neighbouring gene,

BHMT that is also involved in dimethyl-glycine and betaine

metabolism.

SLC16A9 is involved in drug transport, bile salt and organic

anion transport and has been previously shown to be associated

with carnitine, uric acid levels. In the ERF population carnitine

and uric acid are highly correlated (r = 0.25, P -value

= 3.93610213). For this locus, we did not find any potentially

causal coding variants. However, the GWAS hit (rs1171614)

located 59UTR of SLC16A9 influences the expression of

SLC16A9 in both GTEX and GEUVADIS databases, indicating

that the effect on carnitine level is possibly through expression,

rather than the change in protein function.

The metabolite pyruvate is the product of anaerobic glycolysis.

Pyruvate levels correlate with gynoid adipose tissue mass, BMI,

waist hip ratio, TG, glucose, HOMA-IR and leptin in the ERF

population (S4B Table). Genes in the TNP1 locus, particularly

IGFBP5 have been previously associated with visceral adipose

tissue mass in men [17]. Within these genes, we did not find any

causal variants, neither for the GWAS hits were we unable to

uncover downstream eQTL. For 3-hydroxybutyrate, rs173135

located in the 39UTR of KCNJ2 is the most likely causal variant

tagged by the GWAS hit for 3-hydroxybutyrate. The gene is

predominantly expressed in heart muscles but also in brain and the

locus has been previously associated with QT interval and cardiac

repolarization. Currently, it is not known how this gene may be

affecting 3-hydroxybutyrate levels. The association between

SLC7A9 and valine has previously been shown [9]. Within the

candidate genes in this locus, we were not able to detect any causal

variants. However, the leading GWAS SNP is associated with

expression of SLC7A9 and ZPF90. Finally, valine has been

suggestively associated with an intergenic region with no eQTL

association. This region has been previously shown to associate

with bilirubin level, which is a determinant of hepatic health. The

strong correlation between valine and pyruvate levels and the risk

factors of T2DM suggests these loci are candidates for T2DM

research. Using the data from the ERF population, for 7 out of 8

loci, we found no evidence that the mQTL discovered directly or

indirectly influenced the risk factors for common diseases. Our

data indicate that the association between these mQTLs and the

metabolites were independent of disease risk factors. For BMI, our

results support an additive effect of BMI and mQTL, both

influencing the metabolite levels. We did find evidence for an

association between HOMA insulin resistance, valine and

rs11687765. However, this finding asks for replication in

independent larger sized studies.

Altogether, our study provides strong evidence for associations

of metabolic traits with a range of novel and previously detected

genetic loci. These loci are potentially of biomedical and

pharmaceutical interest, and may provide insight into human

metabolic and disease pathways.

Methods

Study cohort
The Erasmus Rucphen Family (ERF) study is a cross-sectional

cohort including 3000 living descendants of 22 couples who had at

least 6 children baptized in the community church around 1850-

1900. The participants are not selected on any disease or other

outcome (S1 Table). Details about the genealogy of the population

have been described elsewhere[18]. The study protocol was

approved by the medical ethics board of the Erasmus MC

Rotterdam, the Netherlands.

1H-NMR JRES measurements
2,640 sera of ERF participants were submitted for 1H-NMR

experiments. All NMR experiments were acquired on a

600 MHz Bruker Avance II spectrometer (Bruker BioSpin,

Karlsruhe, Germany). For this study the 2D J-resolved (JRES)

and CPMG (Carr-Purcell-Meiboom-Gill) methods were used.

Data processing was performed in Topspin and Matlab (R2009a,

The Mathworks Inc., Natick, MA, USA). After eliminating low-

quality spectra after a QC procedure, metabolite intensities were

obtained from the serum CPMG spectra by applying a linear

model. The model was constructed by identifying well-resolved

peaks in the 2D JRES spectrum, and relating the intensity of the

peak representing the metabolite with the intensity profile of the

much more convoluted CPMG spectrum. This way, the higher

resolution of the JRES 2D spectrum is combined with the better

signal-to-noise of the CPMG spectrum. After quality control

peaks in the JRES projection were automatically deconvoluted by

fitting the spectra with mixed Gauss-Lorentz line-shapes using the

Simplex method yielding 256 deconvoluted peaks, 42 metabolites

could be reliably assigned using a combination of chemical shift

interpretation, cross-correlation between peaks and spiking of

pure compounds in a mixed serum sample of them were

annotated to unique metabolites (S2 Table). Further selection

Genetic Variants Influencing NMR Metabolome

PLOS Genetics | www.plosgenetics.org 6 January 2015 | Volume 11 | Issue 1 | e1004835



procedure and QC and the list of unique metabolites studied are

given in the supplement.

Heritability analysis
Heritability estimations for all metabolite concentrations were

obtained using SOLAR version 6.6.2 software using a polygenic

model and sex and age as covariates.

Genome-wide association analyses
Data points below or above 4 standard deviations from the

mean were removed and non-missing data points of all variables

were rank transformed using the ‘‘rank’’ function in R, this

function takes the missing values into account. No samples were

detected as outliers. DNA samples were genotyped according to

the manufacturer’s instructions on Illumina Infinium Human-

Hap300v2, HumanHap300v1 or HumanCNV370v1 SNP bead

microarrays. Genotype data were imputed using MACH 1.0

(v1.0.18.c) using the HapMap CEU population (release 22, build

36). As the ERF study included related individuals, testing for

association between lipid and allele dosage was performed using a

mixed model approach as implemented with the ‘mmscore’ option

in the GenABEL software. 1.7–4 (R 2.15.3) [19]. This option

combines the Family Based Score Test for Association (FASTA)

method of Abecasis et al. [20] and kinship matrix estimated from

genotyped SNPs [21]. The total genotype set after imputation

involved dosage information of approximately 2.5 million SNPs.

Among the 2,640 samples, 2,416 were genotyped, following the

exclusion of people on lipid lowering (N = 298), in total 2,118

samples were included in the final analysis. To correct for multiple

testing, we used the number of unique metabolites (N = 42) which

yielded a suggestive significance zone that lies between 561028

and 1.261029. Details are described in the S2 Text.

Automated annotation of GWAS results
In order to facilitate the manual process of assigning genes to a

locus, we used an automated workflow developed in-house to

generate reports containing the associated protein, enzyme,

metabolic reaction, pathway, and disease phenotypes of every

gene within a window of 1 MB of the locus. In addition, SNPs

published in the GWAS catalog [22] and eQTLs from the GTEx-

eQTL database. (http://www.ncbi.nlm.nih.gov/gtex/GTEX2)

were given. In detail, the reports created by our workflow were

based on the dbSNP [23], NCBI-Gene (http://www.ncbi.nlm.nih.

gov/gene), GTEx-eQTL, GWAS catalog, ConsensusPathDB [24],

UniProtKB [25], OMIM [26], TCDB [27], ExPASy [28] and

KEGG database [29]. The databases had been downloaded

earlier from the respective ftp servers and have been integrated

offline in Matlab. For the KEGG database the last freely available

version was used (30-6-2011).

Exome sequencing
Coding variant analysis were performed within the 3rd data

freeze (N = 1309) from the ERF pedigree which were sequenced

‘‘in-house’’ at the Center for Biomics of the Cell Biology

department of the Erasmus MC, The Netherlands, using the

Agilent version V4 capture kit on an Illumina Hiseq2000

sequencer using the TruSeq Version 3 protocol. The sequence

reads were aligned to the human genome build 19 (hg19) using

BWA and the NARWHAL pipelines [30,31]. After processing,

genetic variants were called using the Unified Genotyper tool from

the GATK. The effects of the called variants on the respective

protein sequences were determined with a custom variant

annotation script. For each sample, at least 4 Gigabases of

sequence was aligned to the genome. All variants in the vicinity of

the genes of interest were selected for further analysis. Variants

with less than 5 observations were removed. Of the 1,309

individuals with exome sequencing data, 921 had eligible NMR

metabolite measurements. Single variant analyses were performed

using and additive model as implemented in the ‘‘mmscore’’

function in GenABEL v.1.7–4, adjusting for relatedness.
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