1,878 research outputs found

    Deeds of Sale Notes

    Get PDF
    Handwritten notes by W. P. Andrews on various land sales and purchases.https://digitalcommons.gardner-webb.edu/fay-webb-gardner-william-perry-andrews/1007/thumbnail.jp

    Sander\u27s Plat

    Get PDF
    Handwritten notes by Dr. William Perry Andrews on the Sander\u27s Plat in Cleveland County, NC.https://digitalcommons.gardner-webb.edu/fay-webb-gardner-william-perry-andrews/1016/thumbnail.jp

    Genealogy Notes - Watson Family Births & Deaths (Dr. W. P. Andrews)

    Get PDF
    Handwritten genealogy notes pertaining to the births and deaths of the Watson family written by Elizabeth Watson\u27s grandson, Dr. William Perry Andrews.https://digitalcommons.gardner-webb.edu/fay-webb-gardner-watson-family/1004/thumbnail.jp

    Exhibit A

    Get PDF
    Handwritten legal addendum to Will & Testament pertaining to inheritance for each of William Perry Andrews\u27s Children.https://digitalcommons.gardner-webb.edu/fay-webb-gardner-william-perry-andrews/1020/thumbnail.jp

    Correspondence - 1873 - W. P Andrews

    Get PDF
    Correspondence by Dr. William Perry Andrews. Handwritten.https://digitalcommons.gardner-webb.edu/fay-webb-gardner-william-perry-andrews/1000/thumbnail.jp

    Genealogy Notes - Andrews Family (W. P. Andrews)

    Get PDF
    Handwritten note by Dr. William Perry Andrews listing the status and location of Revered J. Andrews\u27s children.https://digitalcommons.gardner-webb.edu/fay-webb-gardner-andrews-family-genealogy-notes/1002/thumbnail.jp

    Bivalves as indicators of environmental variation and potential anthropogenic impacts in the southern Barents Sea

    Get PDF
    Author Posting. © Elsevier B.V., 2009. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Marine Pollution Bulletin 59 (2009): 193-206, doi:10.1016/j.marpolbul.2009.02.022.Identifying patterns and drivers of natural variability in populations is necessary to gauge potential effects of climatic change and the expected increases in commercial activities in the Arctic on communities and ecosystems. We analyzed growth rates and shell geochemistry of the circumpolar Greenland smooth cockle, Serripes groenlandicus, from the southern Barents Sea over almost 70 years between 1882 and 1968. The datasets were calibrated via annually-deposited growth lines, and growth, stable isotope (δ18O, δ13C), and trace elemental (Mg, Sr, Ba, Mn) patterns were linked to environmental variations on weekly to decadal scales. Standardized growth indices revealed an oscillatory growth pattern with a multi-year periodicity, which was inversely related to the North Atlantic Oscillation Index (NAO), and positively related to local river discharge. Up to 60% of the annual variability in the Ba/Ca could be explained by variations in river discharge at the site closest to the rivers, but the relationship disappeared at a more distant location. Patterns of δ18O, δ13C, and Sr/Ca together provide evidence that bivalve growth ceases at elevated temperatures during the fall and recommences at the coldest temperatures in the early spring, with the implication that food, rather than temperature, is the primary driver of bivalve growth. The multi-proxy approach of combining the annually integrated information from the growth results and higher resolution geochemical results yielded a robust interpretation of biophysical coupling in the region over temporal and spatial scales. We thus demonstrate that sclerochronological proxies can be useful retrospective analytical tools for establishing a baseline of ecosystem variability in assessing potential combined impacts of climatic change and increasing commercial activities on Arctic communities.We gratefully acknowledge past financial support from Norsk Hydro, and continuing financial support from StatoilHydro, the Norwegian Research Council, and the Howard Hughes Medical Institute through Bates College. This publication was made possible, in part, by NIH Grant Number P20 RR-016463 from the INBRE Program of the National Center for Research Resources

    Neural Systems for Reading Aloud: A Multiparametric Approach

    Get PDF
    Reading aloud involves computing the sound of a word from its visual form. This may be accomplished 1) by direct associations between spellings and phonology and 2) by computation from orthography to meaning to phonology. These components have been studied in behavioral experiments examining lexical properties such as word frequency; length in letters or phonemes; spelling–sound consistency; semantic factors such as imageability, measures of orthographic, or phonological complexity; and others. Effects of these lexical properties on specific neural systems, however, are poorly understood, partially because high intercorrelations among lexical factors make it difficult to determine if they have independent effects. We addressed this problem by decorrelating several important lexical properties through careful stimulus selection. Functional magnetic resonance imaging data revealed distributed neural systems for mapping orthography directly to phonology, involving left supramarginal, posterior middle temporal, and fusiform gyri. Distinct from these were areas reflecting semantic processing, including left middle temporal gyrus/inferior-temporal sulcus, bilateral angular gyrus, and precuneus/posterior cingulate. Left inferior frontal regions generally showed increased activation with greater task load, suggesting a more general role in attention, working memory, and executive processes. These data offer the first clear evidence, in a single study, for the separate neural correlates of orthography–phonology mapping and semantic access during reading aloud

    Identification of functional elements and regulatory circuits by Drosophila modENCODE

    Get PDF
    To gain insight into how genomic information is translated into cellular and developmental programs, the Drosophila model organism Encyclopedia of DNA Elements (modENCODE) project is comprehensively mapping transcripts, histone modifications, chromosomal proteins, transcription factors, replication proteins and intermediates, and nucleosome properties across a developmental time course and in multiple cell lines. We have generated more than 700 data sets and discovered protein-coding, noncoding, RNA regulatory, replication, and chromatin elements, more than tripling the annotated portion of the Drosophila genome. Correlated activity patterns of these elements reveal a functional regulatory network, which predicts putative new functions for genes, reveals stage- and tissue-specific regulators, and enables gene-expression prediction. Our results provide a foundation for directed experimental and computational studies in Drosophila and related species and also a model for systematic data integration toward comprehensive genomic and functional annotation

    Mapping the internal recognition surface of an octanuclear coordination cage using guest libraries

    Get PDF
    Size and shape criteria for guest binding inside the cavity of an octanuclear cubic coordination cage in water have been established using a new fluorescence displacement assay to quantify guest binding. For aliphatic cyclic ketones of increasing size (from C5 to C11), there is a linear relationship between ΔG for guest binding and the guest’s surface area: the change in ΔG for binding is 0.3 kJ mol–1 Å–2, corresponding to 5 kJ mol–1 for each additional CH2 group in the guest, in good agreement with expectations based on hydrophobic desolvation. The highest association constant is K = 1.2 × 106 M–1 for cycloundecanone, whose volume is approximately 50% of the cavity volume; for larger C12 and C13 cyclic ketones, the association constant progressively decreases as the guests become too large. For a series of C10 aliphatic ketones differing in shape but not size, ΔG for guest binding showed no correlation with surface area. These guests are close to the volume limit of the cavity (cf. Rebek’s 55% rule), so the association constant is sensitive to shape complementarity, with small changes in guest structure resulting in large changes in binding affinity. The most flexible members of this series (linear aliphatic ketones) did not bind, whereas the more preorganized cyclic ketones all have association constants of 104–105 M–1. A crystal structure of the cage·cycloundecanone complex shows that the guest carbonyl oxygen is directed into a binding pocket defined by a convergent set of CH groups, which act as weak hydrogen-bond donors, and also shows close contacts between the exterior surface of the disc-shaped guest and the interior surface of the pseudospherical cage cavity despite the slight mismatch in shape
    corecore