2,520 research outputs found

    Surface plasmon resonance screening of synthetic peptides mimicking the immunodominant region of C-S8c1 foot-and-mouth disease virus

    Get PDF
    The main antigenic site (site A) of foot-and-mouth disease virus (FMDV, strain C-S8c1) may be adequately reproduced by a 15-peptide with the amino acid sequence H-YTASARGDLAHLTTT-NH2 (A15), corresponding to the residues 136-150 of the viral protein VPI. The effect of amino acid substitutions within A15 on its antigenicity towards monoclonal antibodies (MAb) raised against antigenic site A, has been studied by means of BIAcore technology, based on surface plasmon resonance (SPR). Although these antigenicities have previously been determined from enzyme-linked immunosorbent assays (ELISA), the SPR-based technique is superior in that it allows a fast and straightforward screening of antigens while simultaneously providing kinetic data of the antigen-antibody interaction. With a view to screening fairly large libraries of individual peptides, we have inverted the typical SPR experiment by immobilizing the MAb on the sensor surface and using peptides as soluble analytes. We report the validation of this approach through the screening of 44 site A peptides, with results generally in good agreement with the relative antigenicities previously determined by competition ELISA

    A Data Fusion Technique to Detect Wireless Network Virtual Jamming Attacks

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.Wireless communications are potentially exposed to jamming due to the openness of the medium and, in particular, to virtual jamming, which allows more energy-efficient attacks. In this paper we tackle the problem of virtual jamming attacks on IEEE 802.11 networks and present a data fusion solution for the detection of a type of virtual jamming attack (namely, NAV attacks), based on the real-time monitoring of a set of metrics. The detection performance is evaluated in a number of real scenarios

    Molecular analysis of peptides from the GH loop of foot-and-mouth disease virus C-S30 using surface plasmon resonance: a role for kinetic rate constants

    Get PDF
    A foot-and-mouth disease virus (FMDV) field variant, isolate C-S30 (also named C-1-Barcelona), is known to contain four changes within the main antigenic site A (GH loop of capsid protein VP1, residues 136-150), at least one of which (Leu147 --> Val) involves a highly conserved position, critical for antibody recognition in the reference strain C-S8c1. However, immunoenzymatic analysis of FMDV C-S30 showed it was recognised by 4C4, a monoclonal antibody that specifically targets site A. This remarkable behaviour has led us to analyse the individual and combined contributions of the four mutations to the antigenicity of C-S30, by surface plasmon resonance (SPR) and enzyme-linked immunosorbent assay (ELISA) studies of pentadecapeptides displaying all possible combinations of the four replacements. Analysis of this family of C-S30-derived analogues shows a certain level of antibody recognition by SPR. In addition, SPR data suggest that kinetic rate constants provide an indirect measure, on the one hand, of paratope accessibility (association rate constant) and, on the other hand, of peptide fitness to the same paratope (dissociation rate constant)

    Decoherence in supernova neutrino transformations suppressed by deleptonization

    Get PDF
    In the dense-neutrino region at 50-400 km above the neutrino sphere in a supernova, neutrino-neutrino interactions cause large flavor transformations. We study when the multi-angle nature of the neutrino trajectories leads to flavor decoherence between different angular modes. We consider a two-flavor mixing scenario between nu_e and another flavor nu_x and assume the usual hierarchy F(nu_e)>F{antinu_e)>F(nu_x)=F(antinu_x) for the number fluxes. We define epsilon=(F(nu_e)-F(antinu_e))/(F(antinu_e)-F(antinu_x)) as a measure for the deleptonization flux which is the one crucial parameter. The transition between the quasi single-angle behavior and multi-angle decoherence is abrupt as a function of epsilon. For typical choices of other parameters, multi-angle decoherence is suppressed for epsilon>0.3, but a much smaller asymmetry suffices if the neutrino mass hierarchy is normal and the mixing angle small. The critical epsilon depends logarithmically on the neutrino luminosity. In a realistic supernova scenario, the deleptonization flux is probably enough to suppress multi-angle decoherence.Comment: 17 pages, 12 figures. Misprint in Eq (14) correcte

    From Wearable Sensors to Smart Implants – Towards Pervasive and Personalised Healthcare

    No full text
    <p>Objective: This article discusses the evolution of pervasive healthcare from its inception for activity recognition using wearable sensors to the future of sensing implant deployment and data processing. Methods: We provide an overview of some of the past milestones and recent developments, categorised into different generations of pervasive sensing applications for health monitoring. This is followed by a review on recent technological advances that have allowed unobtrusive continuous sensing combined with diverse technologies to reshape the clinical workflow for both acute and chronic disease management. We discuss the opportunities of pervasive health monitoring through data linkages with other health informatics systems including the mining of health records, clinical trial databases, multi-omics data integration and social media. Conclusion: Technical advances have supported the evolution of the pervasive health paradigm towards preventative, predictive, personalised and participatory medicine. Significance: The sensing technologies discussed in this paper and their future evolution will play a key role in realising the goal of sustainable healthcare systems.</p> <p> </p

    Effect of acylation on the interaction of the N-Terminal segment of pulmonary surfactant protein SP-C with phospholipid membranes.

    Get PDF
    AbstractSP-C, the smallest pulmonary surfactant protein, is required for the formation and stability of surface-active films at the air–liquid interface in the lung. The protein consists of a hydrophobic transmembrane α-helix and a cationic N-terminal segment containing palmitoylated cysteines. Recent evidence suggests that the N-terminal segment is of critical importance for SP-C function. In the present work, the role of palmitoylation in modulating the lipid–protein interactions of the N-terminal segment of SP-C has been studied by analyzing the effect of palmitoylated and non-palmitoylated synthetic peptides designed to mimic the N-terminal segment on the dynamic properties of phospholipid bilayers, recorded by spin-label electron spin resonance (ESR) spectroscopy. Both palmitoylated and non-palmitoylated peptides decrease the mobility of phosphatidylcholine (5-PCSL) and phosphatidylglycerol (5-PGSL) spin probes in dipalmitoylphosphatidylcholine (DPPC) or dipalmitoylphosphatidylglycerol (DPPG) bilayers. In zwitterionic DPPC membranes, both peptides have a greater effect at temperatures below than above the main gel-to-liquid-crystalline phase transition, the palmitoylated peptide inducing greater immobilisation of the lipid than does the non-palmitoylated form. In anionic DPPG membranes, both palmitoylated and non-palmitoylated peptides have similar immobilizing effects, probably dominated by electrostatic interactions. Both palmitoylated and non-palmitoylated peptides have effects comparable to whole native SP-C, as regards improving the gel phase solubility of phospholipid spin probes and increasing the polarity of the bilayer surface monitored by pK shifts of fatty acid spin probes. This indicates that a significant part of the perturbing properties of SP-C in phospholipid bilayers is mediated by interactions of the N-terminal segment. The effect of SP-C N-terminal peptides on the chain flexibility gradient of DPPC and DPPG bilayers is consistent with the existence of a peptide-promoted interdigitated phase at temperatures below the main gel-to-liquid-crystalline phase transition. The palmitoylated peptide, but not the non-palmitoylated version, is able to stably segregate interdigitated and non-interdigitated populations of phospholipids in DPPC bilayers. This feature suggests that the palmitoylated N-terminal segment stabilizes ordered domains such as those containing interdigitated lipids. We propose that palmitoylation may be important to promote and facilitate association of SP-C and SP-C-containing membranes with ordered lipid structures such as those potentially existing in highly compressed states of the interfacial surfactant film

    (Super)Gelators derived from push-pull chromophores: Synthesis, gelling properties and second harmonic generation

    Get PDF
    The present work takes advantage of the self-assembly process occuring along organogelation, to organize Second Harmonic Generation (SHG) active chromophores. To do so, three push-pull chromophores endowed with a dodecyl urea chain were synthesized and characterized. Their organogelating properties were studied in a wide range of solvents. Despite similar architectures, these derivatives exhibit very different gelling properties, from supergelation to absence of gelling ability. The utilization of the Hansen solubility parameters allows for observing clear relationships between the gelled solvents and critical gelation concentrations. By evaporating the solvents from the organogels, xerogel materials were prepared and systematically studied by means of optical and electron microscopies as well as SHG microscopy. These studies demonstrate the critical role of the solvent over materials structuring and allow generalizing the approach exploiting organogelation as a structuring tool to spontaneously organize push-pull chromophores into SHG-active materials
    • …
    corecore