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Abstract— Wireless communications are potentially exposed to 

jamming due to the openness of the medium and, in particular, to 
virtual jamming, which allows more energy-efficient attacks. In 
this paper we tackle the problem of virtual jamming attacks on 
IEEE 802.11 networks and present a data fusion solution for the 
detection of a type of virtual jamming attack (namely, NAV 
attacks), based on the real-time monitoring of a set of metrics. The 
detection performance is evaluated in a number of real scenarios. 

Index Terms—Measurements and networking, measurements 
on wireless networks, virtual jamming attacks. 

I. INTRODUCTION 

The easily accessible shared transmission channel of 
wireless systems is both an advantage in terms of usability but 
also poses an important vulnerability aspect. The open nature of 
wireless networks exposes the communication channel to a 
number of attacks that are difficult to trace [1],[2], such as 
jamming. The jamming attack is one of the most serious threats 
to wireless systems. Today, jamming attacks are very common 
and rather easy to implement, considering the number of off-the-
shelf tools available ([3], [4] and [5]). Jamming attacks can be 
classified into physical and virtual jamming. Examples of the 
former are: radio jamming, where the attacker transmits 
continuously a radio signal carrying random bits, and the 
collision attack, where the attacker sends a packet only when it 
senses that a legitimate user is sending a valid packet in order to 
cause a collision. Examples of virtual jamming are the spurious 
RTS/CTS attack, which is carried out by sending fake RTS 
frames, and NAV attacks, where the attacker alters the duration 
field of legitimate packets. Both attacks aim to delay legal frame 
transmissions. Unlike physical jamming, virtual jamming is very 
easy to implement and needs little power to carry out the attack. 

The literature provides solutions, which deal with a wide 
range of jamming threats in simulated environments like 
Network Simulation (NS) [6] and GloMoSim [7] or introduces 
MAC layer changes in the IEEE 802.11 protocol. In this work, 
we tackle the problem of the virtual jamming attacks and 
propose a new solution to detect NAV attacks based on 
Dempster-Shafer (DS) theory. The proposed solution has been 
previously proven to successfully detect de-authentication 
attack and Man-in-the-Middle attacks on 802.11 networks [8]. 

The rest of this paper is organised as follows. Section II 
analyses the state of the art for jamming attacks in IEEE 802.11 
networks. An explanation of our attack is described in Section 
III, introducing a novel mechanism to prevent the attack along 
with the best metrics to detect it.. In Section IV, the 
implementation of the attack and the testbed are described in 
detail, concluding with the analysis of the detection results. 
Finally, in Section V the conclusions are presented. 

II. RELATED WORK 

Jamming attacks have been widely researched in the past [9] 
– [14], offering multiple solutions which tackle the problem for 
a wide range of jamming attacks. 

In [9] the authors present DOMINO, a piece of software 
installed in or near an access point in order to detect MAC Layer 
greedy behaviour in 802.11 hotspots. DOMINO is organised in 
three modules: (i) Deviation Estimation Component (DEC), (ii) 
Anomaly Detection Component (ADC) and (iii) Decision 
Making Component (DMC). The DEC module performs the 
following tests: retransmission consistency, DIFS consistency, 
NAV consistency and backoff manipulation test. DOMINO runs 
the tests for each node by tracking each node’s transmissions in 
the network. Therefore, the way the tests are computed might 
become time and resource consuming when the number of nodes 
is increased [10]. DOMINO’s performance is assessed through 
the simulator NS. The results show that DOMINO is 
characterised by high accuracy of detection and resiliency to 
several factors, such as traffic type. 

In [11], the authors propose a distributed cross-layer 
detection system for a wide range of jamming attacks. The 
monitoring functionality is randomly distributed among the 
nodes and the detection mechanism is organised in two phases. 
In the first phase, the system performs 4 tests on: (i) the physical 
idle time, (ii) the average number of RTS/CTS frames 
transmitted by a node, (iii) the virtual idle time (NAV) and (iv) 
the average number of retransmissions of a node. In the second 
phase, the results are put all together and then a final test is 
carried out in order to increase the accuracy. It’s worth noting 
that the solution presented in [11] needs to carry out the tests for 
each node in the network. Therefore, the solution is time and 
resource consuming when increasing the number of the nodes. 
The performance is assessed through the simulator GloMoSim 



and the results show that: (i) as the number of nodes increases, 
the more the DRD (Data Rate Detection) decreases, and (ii) the 
number of false positive increases when increasing the number 
of the nodes. 

In [12] the authors propose a detection algorithm based on 
thresholds that is able to detect and classify physical and virtual 
jamming attacks. The algorithm needs the following metrics as 
inputs: PDR (Packet Delivery Ratio) and PSR (Packets Send 
Ratio). The algorithm’s outcomes are compared with a Signal 
Strength Consistency check in order to improve the overall 
system’s accuracy. The consistency test is necessary because, as 
the authors suggest, the PDR might be low since a node might 
be running out of battery or if user is moving out of the coverage 
area. The used metrics have to be calculated for each node, and 
moreover data has to be retrieved from transmitting and 
receiving nodes during the jamming attack. The way data are 
collected during the attack makes the solution an off-line 
solution. The authors provide simulated results by using NS 
which are characterised by high accuracy and precision rates. 

 

 
Fig. 1.  IEEE 802.11 RTS /CTS mechanism 

In [13] the authors propose a distributed solution to detect 
jamming attacks at the physical layer. In detail, the method is 
based on the detection of changes in the statistical characteristics 
of the Signal to Noise Ratio (SNR). The detection is carried out 
locally by using either a simple-threshold algorithm or a cusum-
type algorithm. The authors also present an improved version 
based on DS theory characterised by high Detection Rates (DRs) 
and low False Positive Rates (FPrs). The improved version 
based on cusum algorithm provides very high DRs and FPrs 
while the improved version based on the simple threshold 
algorithm provides a further increase of 80% of the DRs and 
FPrs. The authors do not provide any assessment about 
algorithm performance in scenarios like hidden terminal or 
fading channel. 

Finally, in [14] the authors focus on virtual jamming attacks, 
providing a protection scheme, which is implemented in the 
MAC layer. In detail, it needs two MAC layer timers as well as 
a NAV timer. The RTS timer and the CTS timer, to track the 
RTS-DATA and the CTS-ACK sequences. Regarding the RTS 
timer, if no header data is received at the beginning of the RTS 
time, then the NAV time is set to zero and the node is ready to 
transmit. Regarding the CTS timer, if no expected ACK frame 
is received after the CTS frame, the NAV timer will be set to 
zero and the node is ready to transmit. The overall solution 
represents a variant from the original IEEE 802.11 protocol, 
which is represented in Fig.1. The performances were assessed 
by using NS. The results show that during a virtual jamming 
attack the throughput of legitimate users do not experience any 
effects. 

In this work, we present a new solution to detect NAV attack 
on 802.11 networks. Unlike the solutions presented earlier, it is 
implemented as a light, centralised and on-line solution. The 
detector is implemented as a single monitoring machine, which 
derives the metrics by observing the ongoing traffic. The 
performance of our solution has been assessed in several real 
scenarios providing good results in terms of high DRs, low FPrs 
and FNrs (False Negative Rates). 

III. PROPOSED METHOD 

A. Attack Description 

The NAV attack exploits the virtual-sense mechanism, 
which aims to mitigate the collisions resulting from the hidden-
terminal problem. Specifically, the header of each 802.11 
packets contains a particular field, named duration, which 
determines the time (in milliseconds) needed to transmit the 
packet on the channel and the time interval during which the 
channel will be busy. Every network node reads the value of the 
duration field in order to set its own NAV timer. Assuming that 
the channel is busy and another node has something to transmit, 
those nodes will have to wait a period equal to NAV in order to 
transmit. After that, those nodes start decreasing their backoff 
time again. Finally, when the backoff timer reaches zero, if the 
channel is idle then the nodes start transmitting otherwise, they 
defer their transmission once again. 

To carry out a NAV attack, the attacker needs to overwrite 
two mechanisms of the IEEE 802.11 protocol: the RTS/CTS 
mechanism and the procedure to calculate the backoff time. 
With regards to the RTS/CTS mechanism, the field duration of 
each RTS packet is set to the maximum NAV value 32767 
(32ms). All nodes listening on the channel will set their NAV 
timers. On the other hand, the contention window of the backoff 
calculation mechanism is set to zero so that the attacker is able 
to transmit in the very first free time slot. 

B. Attack Detection Methodology 

The proposed attack detection methodology is based on the 
use of evidence theory. In recent years, the theory of belief 
functions, also known as the evidence theory developed by 
Dempster and Shafer [15], has drawn the attention of many 
researchers, especially in the fields of sensor and data fusion 
[16]. DS theory provides a simple framework to merge 
information coming from different sensors (DS rule) taking into 
account all the available evidence in uncertain situations. The 
DS theory has also proved to be a viable solution in cases where 
it is impossible to apply classical sensor fusion techniques, such 
as Kalman filter or Bayesian networks, or even when it is 
virtually impossible to find a pattern in the system behaviour to 
build an appropriate model [13]. Before introducing our solution 
in detail, we briefly introduce some basic concepts about DS 
theory. 

1) Dempster-Shafer Theory 
The DS theory starts by taking into account a set of events 

Θ = {$%, $', … , $)} (known as Frame of Discernment), which is 
a finite set of all possible mutually exclusive propositions and 
hypotheses about some problem domain. The total number of 



subsets of Θ, defined by the number of hypotheses, is defined by 
the power set P(Θ). 

Each subset from Θ is assigned a probability value, or a 
confidence interval within [0, 1], by an observer from the mass 
probability function m using the basic probability assignment 
function. The Basic Probability Assignment function (BPA) is 
defined as a function m: P(Θ) → [0, 1] satisfying the following 
three conditions [15]: 

 +,∅. = 0 (1) 

 +,0. ≥ 0, ∀ 0 ⊆  (2) 

 ∑ +,0. = 17 ⊆ 8  (3) 

The function m(A) describes the measure of belief that is 
committed exactly to the hypothesis A. It is worth noting that, in 
contrast to probability theory, DS theory does not comply with 
the Additivity Rule.  

The DS theory is a technique that combines evidence of 
information from different observers with similar Θ using the 
DS rule of combination [15]. Let m1(A) and m2(A) be the BPA 
in the hypothesis A, from observer 1 and 2, respectively. DS rule 
of combination calculates the orthogonal summation of the 
BPAs values in one hypothesis from two different observers into 

a single belief (m1(A)⊕m2(A)). After defining the BPA value for 
each hypothesis, the information from the sensors is merged as 
follows: 

 +9:;<,=. =  ∑ ;>,?.∗;!,".# ∩%&'
%( ∑ ;>,?.∗;!,".# ∩%& ∅

 ∀ = ≠ ∅ (4) 

Further details on DS theory can be found in [12]. 

2) Proposed Detection Method 
A hard and delicate issue that affects the developing phase 

of a detector is how to define the BPA values. In the literature 
there exist multiple ways of assigning probabilities to each of 
the hypotheses in DS theory, ranging from data mining 
techniques to empirical approaches. However, none of these 
works provide methods to find an automatic and self-adaptive 
process of BPA, and few of them could be used off-the-shelf 
without a previous training or fine tuning period. 

The proposed methodology to detect virtual jamming is 
based on the basic probability functions proposed in [8]. The 
framework proved to be successful detecting one type of Man-
in-the-Middle attack and de-authentication attack on wireless 
networks. Additionally, the proposed solution also proved to be 
fast enough to detect the attacks in real-time. 

Initially, the algorithm gathers a number of incoming frames 
and, for each frame, a series of metrics are extracted. Then, using 
the gathered frames, the statistical characteristics of each 
individual metric are calculated. In particular, the mean and the 
mode that are used as reference of normality, as well as the 
distribution of the data. These statistical parameters represent 
the signature of the well-behaved wireless clients, and these are 
compared to the metric values of each individual frame that is 
analysed. After computing all these statistical parameters, the 
BPA value for each individual metric is calculated using the 
methodology proposed in [8].  

For our experiments, the three different hypotheses are {A} 
Attack (the analysed frame is malicious), {N} Normal (the 

analysed frame is non-malicious) and {U} Uncertainty (refers to 
the level of ignorance). 

After the different BPAs are calculated, these values are 
fused using the DS theory. The DS rule allows combining 
evidence from only two observers at a time. Therefore, the 
different BPA values are combined after several consecutive 
iterations. The resulting BPAs indicate which hypotheses 
receive the highest evidence of support. 

It is worth noting that the proposed methodology works in a 
sliding window scheme, as a FIFO queue of prefixed size. If the 
currently analysed frame is judged to be normal, it is pushed to 
the end of the sliding window, the oldest frame is pushed out of 
the window, and the analysed frame will be used to compute new 
BPA values. Otherwise, the current frame is simply dropped. 
The window size affects the algorithm performance and side 
effects are investigated in Section IV. 

 

 
Fig. 2.  Testbed architecture 

IV. PERFORMANCE ASSESSMENT 

A. Testbed Description 

To assess the detection method performance, an 
experimental testbed has been set up and it is depicted in Fig. 2. 
It comprises 3 types of nodes, as well as an Access Point (AP): 
1. Attacker. It runs on Linux Ubuntu 10.04 Lucid Lynx. The 

NIC (Network Interface Controller) is equipped with an 
Atheros 5100 chip, which is supported by the legacy driver 
ATH5000 for Atheros chipsets. The RTS/CTS mechanism 
and backoff calculation mechanism have been modified ad 
hoc, as described in Section III. The driver is loaded as a 
new module in the kernel, forcing an automated bound with 
the hardware during the system initialisation. 

2. Monitor. This station is a monitor node equipped with the 
same Atheros chipset as the attacker and it is configured in 
Monitor Mode to listen to the channel. We used Wireshark 
[17] to collect the traffic. Furthermore, we used our 
modified version of ATH5000 driver to gather live statistics 
from the wireless interface card, i.e. CRC error. The 
monitor node is placed close the AP.  

3. Client. We used two clients during our experiments, namely 
ClientA and ClientB. Both clients act as well-behaved users, 
sending traffic during the whole monitoring period. The 
traffic was artificially generated using the iperf linux 
command [18] to send constant bit rate UDP traffic in data 
frames. 

The experimental campaign is summarised in Table I. In 
detail, in order to validate our solution, a list of 9 scenarios is 



proposed, including fixed and mobile well-behaved users. The 
first two scenarios are normal scenarios without any attack. As 
regards scenarios from 3 to 9, each of them has a total duration 
of 90 seconds and includes three phases: i) initial phase, where 
only the well-behaved node/s send traffic, ii) attack phase, where 
the attack is launched, and iii) final phase, where the attacker is 
deactivated in order to recover normality. Each phase has a 
duration of 30 seconds. 

TABLE I.  EXPERIMENT DESCRIPTION 

Scenario 
# 

Description 

1 No attacker, fixed ClientA and ClientB  
2 No attacker, fixed ClientA and fixed ClientB 

(with high NAV value) 
3 Fixed ClientA 

4 Fixed ClientA and ClientB 
5 Moving ClientA 
6 Moving ClientA and ClientB 

7 Fixed ClientA and moving ClientB 
8 Moving ClientA and fixed ClientB 

9 Fixed ClientB sending TCP traffic 

 
The test cases have been designed to emulate actual 

scenarios in WiFi networks. They include scenarios where a 
client is located in a fixed position, keeping a constant distance 
to the AP to maintain stable parameters in the received radio 
signal, as well as situations in which random movement was 
introduced to emulate an actual mobile situation. Mixed 
scenarios are also taken into account, including both fixed and 
moving nodes to assess the performance of the detection 
algorithm when multiple clients are competing for the available 
resources. To conclude, a test using TCP was carried out to study 
how the jamming attack could affect the establishment of a TCP 
connection, which requires the completion of a three-way 
handshake process successfully to enable a communication link. 

B. Metrics 

Regarding the metrics to monitor, the presented literature 
drove us through the selection process. The metrics monitored 
are: NAV, frame deltatime and FSN (Frame Sequence Number). 
Monitoring NAV to detect a greedy behaviour or NAV attack is 
common in the literature [9], [11] and [14]. However, detecting 
intelligent jamming attacks by simply monitoring NAV is not a 
robust solution, because even if the intelligent jammer exploits 
high values of the NAV to carry out the attack, those values 
remain legitimate [19]. In [11], [12] and [19], the authors 
suggest using metrics related to the number of packets sent and 
received such as PDR, PSR and channel utilisation, in order to 
detect several types of attacks. We included in our analysis a 
similar metric: frames deltatime. Frame deltatime is obviously 
affected by the attack since the main effect of a jamming attack 
is a service disruption, causing bandwidth reduction and an 
increase in the deltatime between two consecutive transmitted 
frames. Finally, we took into consideration the FSN metric 
which has detectable peaks in the first order time differences of 
the frame sequence numbers, DiffFSN. The FSN metric presents 
the aforementioned peaks in its first order time difference 

because the WiFi card buffers overflow during the attack and it 
causes dropped packets. 

Finally, the performance of our solution is evaluated by 

using the following metrics: (i) Detection Rate *+ =  ,-
,-./0 

where TP stands for True Positive and FN stands for False 

Negative, (ii) False Positive rate 123 =  /-
/-./0 where FP stands 

for False Positive and FN stands for False Negative and (iii) 

False Negative rate 143 =  /0
,-./0. 

C. Experimental Results 

The presented solution has been preliminary tested on the 
first two scenarios in Table I, when no attack is ongoing, in order 
to check the performance of our solution in term of FPr. 

The scenario 1 has two legitimate nodes with both low NAV 
value, whereas the scenario 2 has two legitimate nodes but one 
with a low NAV value and the other one with a naturally high 
NAV value. 

The experimental results for these two scenarios are reported 
in Table II, for each combination of metrics. The results show 
that the best single metric combination in term of lowest FPrs is 
the NAV. However, while the FPr for the NAV metric is around 
2% in scenario 1, it rises up to 17% in scenario 2. Such 
worsening in the performance is due to the fact that in scenario 
2, one of the legitimate users has set a high NAV value, which 
confuses the algorithm and causes false positive. In fact, the 
frames with the high NAV value are 17% of the total frames in 
the second scenario and all of them have been detected as 
malicious frames. As regards the multiple metric combinations, 
all of them exhibit similar performance, with an FPr equal to 
(about) 25%, which unfortunately does not represent a 
performance enhancement in scenario 2. The detection 
algorithm thus suffers from false positives when legitimate users 
have high NAV values.  

TABLE II.  FPRS FOR SCENARIOS 1 AND 2 

 Scenario 1 Scenario 2 

NAV 2% 19% 
DiffFSN 25% 38% 

Deltatime 86% 86% 
NAV, Deltatime 86% 86% 
NAV, DiffFSN 25% 25% 

Deltatime, DiffFSN 23% 25% 
Deltatime, DiffFSN, NAV 23% 25% 

 
The experimental results are presented in Table III. The table 

reports the performance evaluation of our methodology in terms 
of DRrs, FPrs and FNrs for different combination of metrics and 
for each scenario in Table I. The results presented in Table II 
have been obtained using a sliding window size of 20 samples. 

Among all the evaluated combination of metrics, making use 
of the single metric NAV provides the best results in terms of 
high DRs, low FNrs and FPrs in all the tested scenarios. Fig.3 
shows the NAV metric over time.  

 



 
Fig. 3.  NAV metric in Scenario 7. 

The single metric Deltatime exhibits high DRs with likewise 
high FPrs. These bad results are due to the fact that legitimate 
clients cannot send any frames over the wireless medium during 
the attack and, in consequence, the monitoring system cannot 
update the metrics for the calculation of the respective beliefs. 

Fig. 4 shows the Deltatime over time. The evidence of an attack 
is visible in the Deltatime only at end of the attack apart from 
some occasional spikes during the attack. 

The single metric DiffFSN exhibits the worst results among 
the single metric combinations with low DRs, low FPr and high 
FNr. The DiffFSN metric, like the metric Deltatime, cannot be 
update by the monitoring system during the attack. Fig. 5 shows 
the DiffFSN over time. The evidence of an attack is visible in 
the DiffFSN only at end of the attack. 

The multiple metrics combinations do not provide any 
improvement in comparison with the result obtained by the 
single metric combination NAV. 

In detail, the multiple metrics combination NAV, Deltatime 
provides high DR but high FPr. It worth noting that the results 
are very similar to the single metric combination Deltatime. No 
improvements are shown bringing in the further evidence 
provided by Deltatime metric. 

Finally, the multiple metrics combinations NAV, DiffFSN 
and NAV, Deltatime and DiffFSN provide the worst results with 
low DRs, hight FNrs and low FPrs. 

The best metrics combination in term of DRs, FNrs and FPrs 
is the single metric combination NAV. However, any solution 
to detect NAV attack based on the single metric NAV is 
completely lack of robustness as the NAV value takes totally 
legitimate values during the attack.  

TABLE III. RESULTS 

 Scenario 3  Scenario 4  Scenario 5  Scenario 6 

 Dr FNr FPr  Dr FNr FPr  Dr FNr FPr  Dr FNr FPr 

NAV 100% 0% 0%  100% 0% 8%  100% 0% 0%  100% 0% 3% 

Deltatime 83% 17% 60%  99% 1% 64%  83% 17% 56%  79% 21% 69% 

DiffFSN 1% 99% 28%  2% 98% 7%  1% 99% 27%  30% 70% 20% 

NAV, Deltatime 83% 17% 60%  99% 1% 64%  83% 17% 56%  79% 21% 69% 

NAV, DiffFSN 1% 99% 24%  3% 97% 7%  1% 99% 27%  30% 70% 20% 

Deltatime, DiffFSN 1% 99% 28%  3% 97% 17%  1% 99% 23%  23% 77% 18% 

Deltatime, DiffFSN, NAV 1% 99% 24%  15% 85% 17%  1% 99% 23%  23% 77% 18% 

 Scenario 7  Scenario 8  Scenario 9     

NAV 100% 0% 3%  100% 0% 2%  100% 0% 6%     

Deltatime 81% 19% 69%  76% 24% 64%  100% 0% 81%     

DiffFSN 17% 83% 20%  36% 64% 17%  1% 99% 2%     

NAV, Deltatime 81% 19% 69%  98% 2% 64%  100% 0% 81%     

NAV, DiffFSN 17% 83% 20%  36% 64% 17%  1% 99% 2%     

Deltatime, DiffFSN 14% 86% 19%  36% 64% 16%  1% 99% 4%     

Deltatime, DiffFSN, NAV 14% 86% 19%  36% 64% 16%  2% 98% 4%     

 



V. CONCLUSIONS 

In this work, we have tackled the problem of identifying 
virtual jamming attacks on IEEE 802.11 networks and presented 
a solution based on DS theory aimed at detecting NAV attacks.  

The solution has been tested on real wireless scenarios, 
showing good results in terms of DRs and FNrs. However, the 
proposed detection method suffers from high FPr when there is 
no attack ongoing and one of the users has legitimately high 
NAV values. Future work will be focused on the mitigation of 
the effects of FPr, which prevent the proposed methodology 
from being considered as a viable solution in operating 
networks. In particular, ongoing activity aims to investigate 
further metrics to be used in combination with NAV, in order to 
have a more robust solution.  
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