
A Data Fusion Technique to Detect Wireless Network
Virtual Jamming Attacks

G. Escudero-Andreu, K.G. Kyriakopoulos, F.J.
Aparicio-Navarro and D.J. Parish

School of Electronic, Electrical and Systems Engineering
Loughborough University

LE11 3TU Loughborough, U.K.
{elge2, elkk, elfja2, d.j.parish}@lboro.ac.uk

D. Santoro, M. Vadursi

Department of Engineering
University of Naples “Parthenope”

Naples, Italy
{diego.santoro; michele.vadursi}@uniparthenope.it

Abstract— Wireless communications are potentially exposed to

jamming due to the openness of the medium and, in particular, to
virtual jamming, which allows more energy-efficient attacks. In
this paper we tackle the problem of virtual jamming attacks on
IEEE 802.11 networks and present a data fusion solution for the
detection of a type of virtual jamming attack (namely, NAV
attacks), based on the real-time monitoring of a set of metrics. The
detection performance is evaluated in a number of real scenarios.

Index Terms—Measurements and networking, measurements
on wireless networks, virtual jamming attacks.

I. INTRODUCTION

The easily accessible shared transmission channel of
wireless systems is both an advantage in terms of usability but
also poses an important vulnerability aspect. The open nature of
wireless networks exposes the communication channel to a
number of attacks that are difficult to trace [1],[2], such as
jamming. The jamming attack is one of the most serious threats
to wireless systems. Today, jamming attacks are very common
and rather easy to implement, considering the number of off-the-
shelf tools available ([3], [4] and [5]). Jamming attacks can be
classified into physical and virtual jamming. Examples of the
former are: radio jamming, where the attacker transmits
continuously a radio signal carrying random bits, and the
collision attack, where the attacker sends a packet only when it
senses that a legitimate user is sending a valid packet in order to
cause a collision. Examples of virtual jamming are the spurious
RTS/CTS attack, which is carried out by sending fake RTS
frames, and NAV attacks, where the attacker alters the duration
field of legitimate packets. Both attacks aim to delay legal frame
transmissions. Unlike physical jamming, virtual jamming is very
easy to implement and needs little power to carry out the attack.

The literature provides solutions, which deal with a wide
range of jamming threats in simulated environments like
Network Simulation (NS) [6] and GloMoSim [7] or introduces
MAC layer changes in the IEEE 802.11 protocol. In this work,
we tackle the problem of the virtual jamming attacks and
propose a new solution to detect NAV attacks based on
Dempster-Shafer (DS) theory. The proposed solution has been
previously proven to successfully detect de-authentication
attack and Man-in-the-Middle attacks on 802.11 networks [8].

The rest of this paper is organised as follows. Section II
analyses the state of the art for jamming attacks in IEEE 802.11
networks. An explanation of our attack is described in Section
III, introducing a novel mechanism to prevent the attack along
with the best metrics to detect it.. In Section IV, the
implementation of the attack and the testbed are described in
detail, concluding with the analysis of the detection results.
Finally, in Section V the conclusions are presented.

II. RELATED WORK

Jamming attacks have been widely researched in the past [9]
– [14], offering multiple solutions which tackle the problem for
a wide range of jamming attacks.

In [9] the authors present DOMINO, a piece of software
installed in or near an access point in order to detect MAC Layer
greedy behaviour in 802.11 hotspots. DOMINO is organised in
three modules: (i) Deviation Estimation Component (DEC), (ii)
Anomaly Detection Component (ADC) and (iii) Decision
Making Component (DMC). The DEC module performs the
following tests: retransmission consistency, DIFS consistency,
NAV consistency and backoff manipulation test. DOMINO runs
the tests for each node by tracking each node’s transmissions in
the network. Therefore, the way the tests are computed might
become time and resource consuming when the number of nodes
is increased [10]. DOMINO’s performance is assessed through
the simulator NS. The results show that DOMINO is
characterised by high accuracy of detection and resiliency to
several factors, such as traffic type.

In [11], the authors propose a distributed cross-layer
detection system for a wide range of jamming attacks. The
monitoring functionality is randomly distributed among the
nodes and the detection mechanism is organised in two phases.
In the first phase, the system performs 4 tests on: (i) the physical
idle time, (ii) the average number of RTS/CTS frames
transmitted by a node, (iii) the virtual idle time (NAV) and (iv)
the average number of retransmissions of a node. In the second
phase, the results are put all together and then a final test is
carried out in order to increase the accuracy. It’s worth noting
that the solution presented in [11] needs to carry out the tests for
each node in the network. Therefore, the solution is time and
resource consuming when increasing the number of the nodes.
The performance is assessed through the simulator GloMoSim

and the results show that: (i) as the number of nodes increases,
the more the DRD (Data Rate Detection) decreases, and (ii) the
number of false positive increases when increasing the number
of the nodes.

In [12] the authors propose a detection algorithm based on
thresholds that is able to detect and classify physical and virtual
jamming attacks. The algorithm needs the following metrics as
inputs: PDR (Packet Delivery Ratio) and PSR (Packets Send
Ratio). The algorithm’s outcomes are compared with a Signal
Strength Consistency check in order to improve the overall
system’s accuracy. The consistency test is necessary because, as
the authors suggest, the PDR might be low since a node might
be running out of battery or if user is moving out of the coverage
area. The used metrics have to be calculated for each node, and
moreover data has to be retrieved from transmitting and
receiving nodes during the jamming attack. The way data are
collected during the attack makes the solution an off-line
solution. The authors provide simulated results by using NS
which are characterised by high accuracy and precision rates.

Fig. 1. IEEE 802.11 RTS /CTS mechanism

In [13] the authors propose a distributed solution to detect
jamming attacks at the physical layer. In detail, the method is
based on the detection of changes in the statistical characteristics
of the Signal to Noise Ratio (SNR). The detection is carried out
locally by using either a simple-threshold algorithm or a cusum-
type algorithm. The authors also present an improved version
based on DS theory characterised by high Detection Rates (DRs)
and low False Positive Rates (FPrs). The improved version
based on cusum algorithm provides very high DRs and FPrs
while the improved version based on the simple threshold
algorithm provides a further increase of 80% of the DRs and
FPrs. The authors do not provide any assessment about
algorithm performance in scenarios like hidden terminal or
fading channel.

Finally, in [14] the authors focus on virtual jamming attacks,
providing a protection scheme, which is implemented in the
MAC layer. In detail, it needs two MAC layer timers as well as
a NAV timer. The RTS timer and the CTS timer, to track the
RTS-DATA and the CTS-ACK sequences. Regarding the RTS
timer, if no header data is received at the beginning of the RTS
time, then the NAV time is set to zero and the node is ready to
transmit. Regarding the CTS timer, if no expected ACK frame
is received after the CTS frame, the NAV timer will be set to
zero and the node is ready to transmit. The overall solution
represents a variant from the original IEEE 802.11 protocol,
which is represented in Fig.1. The performances were assessed
by using NS. The results show that during a virtual jamming
attack the throughput of legitimate users do not experience any
effects.

In this work, we present a new solution to detect NAV attack
on 802.11 networks. Unlike the solutions presented earlier, it is
implemented as a light, centralised and on-line solution. The
detector is implemented as a single monitoring machine, which
derives the metrics by observing the ongoing traffic. The
performance of our solution has been assessed in several real
scenarios providing good results in terms of high DRs, low FPrs
and FNrs (False Negative Rates).

III. PROPOSED METHOD

A. Attack Description

The NAV attack exploits the virtual-sense mechanism,
which aims to mitigate the collisions resulting from the hidden-
terminal problem. Specifically, the header of each 802.11
packets contains a particular field, named duration, which
determines the time (in milliseconds) needed to transmit the
packet on the channel and the time interval during which the
channel will be busy. Every network node reads the value of the
duration field in order to set its own NAV timer. Assuming that
the channel is busy and another node has something to transmit,
those nodes will have to wait a period equal to NAV in order to
transmit. After that, those nodes start decreasing their backoff
time again. Finally, when the backoff timer reaches zero, if the
channel is idle then the nodes start transmitting otherwise, they
defer their transmission once again.

To carry out a NAV attack, the attacker needs to overwrite
two mechanisms of the IEEE 802.11 protocol: the RTS/CTS
mechanism and the procedure to calculate the backoff time.
With regards to the RTS/CTS mechanism, the field duration of
each RTS packet is set to the maximum NAV value 32767
(32ms). All nodes listening on the channel will set their NAV
timers. On the other hand, the contention window of the backoff
calculation mechanism is set to zero so that the attacker is able
to transmit in the very first free time slot.

B. Attack Detection Methodology

The proposed attack detection methodology is based on the
use of evidence theory. In recent years, the theory of belief
functions, also known as the evidence theory developed by
Dempster and Shafer [15], has drawn the attention of many
researchers, especially in the fields of sensor and data fusion
[16]. DS theory provides a simple framework to merge
information coming from different sensors (DS rule) taking into
account all the available evidence in uncertain situations. The
DS theory has also proved to be a viable solution in cases where
it is impossible to apply classical sensor fusion techniques, such
as Kalman filter or Bayesian networks, or even when it is
virtually impossible to find a pattern in the system behaviour to
build an appropriate model [13]. Before introducing our solution
in detail, we briefly introduce some basic concepts about DS
theory.

1) Dempster-Shafer Theory
The DS theory starts by taking into account a set of events

Θ = {$%, $', … , $)} (known as Frame of Discernment), which is
a finite set of all possible mutually exclusive propositions and
hypotheses about some problem domain. The total number of

subsets of Θ, defined by the number of hypotheses, is defined by
the power set P(Θ).

Each subset from Θ is assigned a probability value, or a
confidence interval within [0, 1], by an observer from the mass
probability function m using the basic probability assignment
function. The Basic Probability Assignment function (BPA) is
defined as a function m: P(Θ) → [0, 1] satisfying the following
three conditions [15]:

 +,∅. = 0 (1)

 +,0. ≥ 0, ∀ 0 ⊆ (2)

 ∑ +,0. = 17 ⊆ 8 (3)

The function m(A) describes the measure of belief that is
committed exactly to the hypothesis A. It is worth noting that, in
contrast to probability theory, DS theory does not comply with
the Additivity Rule.

The DS theory is a technique that combines evidence of
information from different observers with similar Θ using the
DS rule of combination [15]. Let m1(A) and m2(A) be the BPA
in the hypothesis A, from observer 1 and 2, respectively. DS rule
of combination calculates the orthogonal summation of the
BPAs values in one hypothesis from two different observers into

a single belief (m1(A)⊕m2(A)). After defining the BPA value for
each hypothesis, the information from the sensors is merged as
follows:

 +9:;<,=. = ∑ ;>,?.∗;!,".# ∩%&'
%(∑ ;>,?.∗;!,".# ∩%& ∅

 ∀ = ≠ ∅ (4)

Further details on DS theory can be found in [12].

2) Proposed Detection Method
A hard and delicate issue that affects the developing phase

of a detector is how to define the BPA values. In the literature
there exist multiple ways of assigning probabilities to each of
the hypotheses in DS theory, ranging from data mining
techniques to empirical approaches. However, none of these
works provide methods to find an automatic and self-adaptive
process of BPA, and few of them could be used off-the-shelf
without a previous training or fine tuning period.

The proposed methodology to detect virtual jamming is
based on the basic probability functions proposed in [8]. The
framework proved to be successful detecting one type of Man-
in-the-Middle attack and de-authentication attack on wireless
networks. Additionally, the proposed solution also proved to be
fast enough to detect the attacks in real-time.

Initially, the algorithm gathers a number of incoming frames
and, for each frame, a series of metrics are extracted. Then, using
the gathered frames, the statistical characteristics of each
individual metric are calculated. In particular, the mean and the
mode that are used as reference of normality, as well as the
distribution of the data. These statistical parameters represent
the signature of the well-behaved wireless clients, and these are
compared to the metric values of each individual frame that is
analysed. After computing all these statistical parameters, the
BPA value for each individual metric is calculated using the
methodology proposed in [8].

For our experiments, the three different hypotheses are {A}
Attack (the analysed frame is malicious), {N} Normal (the

analysed frame is non-malicious) and {U} Uncertainty (refers to
the level of ignorance).

After the different BPAs are calculated, these values are
fused using the DS theory. The DS rule allows combining
evidence from only two observers at a time. Therefore, the
different BPA values are combined after several consecutive
iterations. The resulting BPAs indicate which hypotheses
receive the highest evidence of support.

It is worth noting that the proposed methodology works in a
sliding window scheme, as a FIFO queue of prefixed size. If the
currently analysed frame is judged to be normal, it is pushed to
the end of the sliding window, the oldest frame is pushed out of
the window, and the analysed frame will be used to compute new
BPA values. Otherwise, the current frame is simply dropped.
The window size affects the algorithm performance and side
effects are investigated in Section IV.

Fig. 2. Testbed architecture

IV. PERFORMANCE ASSESSMENT

A. Testbed Description

To assess the detection method performance, an
experimental testbed has been set up and it is depicted in Fig. 2.
It comprises 3 types of nodes, as well as an Access Point (AP):
1. Attacker. It runs on Linux Ubuntu 10.04 Lucid Lynx. The

NIC (Network Interface Controller) is equipped with an
Atheros 5100 chip, which is supported by the legacy driver
ATH5000 for Atheros chipsets. The RTS/CTS mechanism
and backoff calculation mechanism have been modified ad
hoc, as described in Section III. The driver is loaded as a
new module in the kernel, forcing an automated bound with
the hardware during the system initialisation.

2. Monitor. This station is a monitor node equipped with the
same Atheros chipset as the attacker and it is configured in
Monitor Mode to listen to the channel. We used Wireshark
[17] to collect the traffic. Furthermore, we used our
modified version of ATH5000 driver to gather live statistics
from the wireless interface card, i.e. CRC error. The
monitor node is placed close the AP.

3. Client. We used two clients during our experiments, namely
ClientA and ClientB. Both clients act as well-behaved users,
sending traffic during the whole monitoring period. The
traffic was artificially generated using the iperf linux
command [18] to send constant bit rate UDP traffic in data
frames.

The experimental campaign is summarised in Table I. In
detail, in order to validate our solution, a list of 9 scenarios is

proposed, including fixed and mobile well-behaved users. The
first two scenarios are normal scenarios without any attack. As
regards scenarios from 3 to 9, each of them has a total duration
of 90 seconds and includes three phases: i) initial phase, where
only the well-behaved node/s send traffic, ii) attack phase, where
the attack is launched, and iii) final phase, where the attacker is
deactivated in order to recover normality. Each phase has a
duration of 30 seconds.

TABLE I. EXPERIMENT DESCRIPTION

Scenario

Description

1 No attacker, fixed ClientA and ClientB
2 No attacker, fixed ClientA and fixed ClientB

(with high NAV value)
3 Fixed ClientA

4 Fixed ClientA and ClientB
5 Moving ClientA
6 Moving ClientA and ClientB

7 Fixed ClientA and moving ClientB
8 Moving ClientA and fixed ClientB

9 Fixed ClientB sending TCP traffic

The test cases have been designed to emulate actual

scenarios in WiFi networks. They include scenarios where a
client is located in a fixed position, keeping a constant distance
to the AP to maintain stable parameters in the received radio
signal, as well as situations in which random movement was
introduced to emulate an actual mobile situation. Mixed
scenarios are also taken into account, including both fixed and
moving nodes to assess the performance of the detection
algorithm when multiple clients are competing for the available
resources. To conclude, a test using TCP was carried out to study
how the jamming attack could affect the establishment of a TCP
connection, which requires the completion of a three-way
handshake process successfully to enable a communication link.

B. Metrics

Regarding the metrics to monitor, the presented literature
drove us through the selection process. The metrics monitored
are: NAV, frame deltatime and FSN (Frame Sequence Number).
Monitoring NAV to detect a greedy behaviour or NAV attack is
common in the literature [9], [11] and [14]. However, detecting
intelligent jamming attacks by simply monitoring NAV is not a
robust solution, because even if the intelligent jammer exploits
high values of the NAV to carry out the attack, those values
remain legitimate [19]. In [11], [12] and [19], the authors
suggest using metrics related to the number of packets sent and
received such as PDR, PSR and channel utilisation, in order to
detect several types of attacks. We included in our analysis a
similar metric: frames deltatime. Frame deltatime is obviously
affected by the attack since the main effect of a jamming attack
is a service disruption, causing bandwidth reduction and an
increase in the deltatime between two consecutive transmitted
frames. Finally, we took into consideration the FSN metric
which has detectable peaks in the first order time differences of
the frame sequence numbers, DiffFSN. The FSN metric presents
the aforementioned peaks in its first order time difference

because the WiFi card buffers overflow during the attack and it
causes dropped packets.

Finally, the performance of our solution is evaluated by

using the following metrics: (i) Detection Rate *+ = ,-
,-./0

where TP stands for True Positive and FN stands for False

Negative, (ii) False Positive rate 123 = /-
/-./0 where FP stands

for False Positive and FN stands for False Negative and (iii)

False Negative rate 143 = /0
,-./0.

C. Experimental Results

The presented solution has been preliminary tested on the
first two scenarios in Table I, when no attack is ongoing, in order
to check the performance of our solution in term of FPr.

The scenario 1 has two legitimate nodes with both low NAV
value, whereas the scenario 2 has two legitimate nodes but one
with a low NAV value and the other one with a naturally high
NAV value.

The experimental results for these two scenarios are reported
in Table II, for each combination of metrics. The results show
that the best single metric combination in term of lowest FPrs is
the NAV. However, while the FPr for the NAV metric is around
2% in scenario 1, it rises up to 17% in scenario 2. Such
worsening in the performance is due to the fact that in scenario
2, one of the legitimate users has set a high NAV value, which
confuses the algorithm and causes false positive. In fact, the
frames with the high NAV value are 17% of the total frames in
the second scenario and all of them have been detected as
malicious frames. As regards the multiple metric combinations,
all of them exhibit similar performance, with an FPr equal to
(about) 25%, which unfortunately does not represent a
performance enhancement in scenario 2. The detection
algorithm thus suffers from false positives when legitimate users
have high NAV values.

TABLE II. FPRS FOR SCENARIOS 1 AND 2

 Scenario 1 Scenario 2

NAV 2% 19%
DiffFSN 25% 38%

Deltatime 86% 86%
NAV, Deltatime 86% 86%
NAV, DiffFSN 25% 25%

Deltatime, DiffFSN 23% 25%
Deltatime, DiffFSN, NAV 23% 25%

The experimental results are presented in Table III. The table

reports the performance evaluation of our methodology in terms
of DRrs, FPrs and FNrs for different combination of metrics and
for each scenario in Table I. The results presented in Table II
have been obtained using a sliding window size of 20 samples.

Among all the evaluated combination of metrics, making use
of the single metric NAV provides the best results in terms of
high DRs, low FNrs and FPrs in all the tested scenarios. Fig.3
shows the NAV metric over time.

Fig. 3. NAV metric in Scenario 7.

The single metric Deltatime exhibits high DRs with likewise
high FPrs. These bad results are due to the fact that legitimate
clients cannot send any frames over the wireless medium during
the attack and, in consequence, the monitoring system cannot
update the metrics for the calculation of the respective beliefs.

Fig. 4 shows the Deltatime over time. The evidence of an attack
is visible in the Deltatime only at end of the attack apart from
some occasional spikes during the attack.

The single metric DiffFSN exhibits the worst results among
the single metric combinations with low DRs, low FPr and high
FNr. The DiffFSN metric, like the metric Deltatime, cannot be
update by the monitoring system during the attack. Fig. 5 shows
the DiffFSN over time. The evidence of an attack is visible in
the DiffFSN only at end of the attack.

The multiple metrics combinations do not provide any
improvement in comparison with the result obtained by the
single metric combination NAV.

In detail, the multiple metrics combination NAV, Deltatime
provides high DR but high FPr. It worth noting that the results
are very similar to the single metric combination Deltatime. No
improvements are shown bringing in the further evidence
provided by Deltatime metric.

Finally, the multiple metrics combinations NAV, DiffFSN
and NAV, Deltatime and DiffFSN provide the worst results with
low DRs, hight FNrs and low FPrs.

The best metrics combination in term of DRs, FNrs and FPrs
is the single metric combination NAV. However, any solution
to detect NAV attack based on the single metric NAV is
completely lack of robustness as the NAV value takes totally
legitimate values during the attack.

TABLE III. RESULTS

 Scenario 3 Scenario 4 Scenario 5 Scenario 6

 Dr FNr FPr Dr FNr FPr Dr FNr FPr Dr FNr FPr

NAV 100% 0% 0% 100% 0% 8% 100% 0% 0% 100% 0% 3%

Deltatime 83% 17% 60% 99% 1% 64% 83% 17% 56% 79% 21% 69%

DiffFSN 1% 99% 28% 2% 98% 7% 1% 99% 27% 30% 70% 20%

NAV, Deltatime 83% 17% 60% 99% 1% 64% 83% 17% 56% 79% 21% 69%

NAV, DiffFSN 1% 99% 24% 3% 97% 7% 1% 99% 27% 30% 70% 20%

Deltatime, DiffFSN 1% 99% 28% 3% 97% 17% 1% 99% 23% 23% 77% 18%

Deltatime, DiffFSN, NAV 1% 99% 24% 15% 85% 17% 1% 99% 23% 23% 77% 18%

 Scenario 7 Scenario 8 Scenario 9

NAV 100% 0% 3% 100% 0% 2% 100% 0% 6%

Deltatime 81% 19% 69% 76% 24% 64% 100% 0% 81%

DiffFSN 17% 83% 20% 36% 64% 17% 1% 99% 2%

NAV, Deltatime 81% 19% 69% 98% 2% 64% 100% 0% 81%

NAV, DiffFSN 17% 83% 20% 36% 64% 17% 1% 99% 2%

Deltatime, DiffFSN 14% 86% 19% 36% 64% 16% 1% 99% 4%

Deltatime, DiffFSN, NAV 14% 86% 19% 36% 64% 16% 2% 98% 4%

V. CONCLUSIONS

In this work, we have tackled the problem of identifying
virtual jamming attacks on IEEE 802.11 networks and presented
a solution based on DS theory aimed at detecting NAV attacks.

The solution has been tested on real wireless scenarios,
showing good results in terms of DRs and FNrs. However, the
proposed detection method suffers from high FPr when there is
no attack ongoing and one of the users has legitimately high
NAV values. Future work will be focused on the mitigation of
the effects of FPr, which prevent the proposed methodology
from being considered as a viable solution in operating
networks. In particular, ongoing activity aims to investigate
further metrics to be used in combination with NAV, in order to
have a more robust solution.

ACKNOWLEDGMENT

This work was supported by the Engineering and Physical
Sciences Research Council (EPSRC) Grant number
EP/K014307/1 and the MOD University Research Collaboration
in Signal Processing.

REFERENCES

[1] N. Nostro, A. Ceccarelli, A. Bondavalli, F. Brancati, “A methodology and
supporting techniques for the quantitative assessment of insider threats,”
Proc. of the 2nd Int. Workshop on Dependability Issues in Cloud
Computing (p. 3), 2013, ACM.

[2] N. Nostro, A. Ceccarelli, A. Bondavalli, and F. Brancati. “Insider Threat
Assessment: a Model-Based Methodology,” SIGOPS Oper. Syst. Rev., 48,
2, December 2014, pp. 3-12.

[3] Sesp jammers, Website Available: http://www.sesp.com (Access Date: 19
Jun, 2015)

[4] Mobiledevice jammer, http://www.phonejammer.com/home.php (Access
Date: 19 Jun, 2015)

[5] Software-defined radios, Website Available: http://www.ettus.com/home
(Access Date: 19 Jun, 2015)

[6] NS, Website Available: https://www.nsnam.org/ (Access Date: 19 Jun,
2015)

[7] X. Zeng, R. Bagrodia, M. Gerla, "GloMoSim: a library for parallel
simulation of large-scale wireless networks, " Proc. of the Parallel and
Distributed Simulation PADS 1998, 26-29 May 1998, pp. 154 – 161.

[8] F.J. Aparicio-Navarro, K.G. Kyriakopoulos, D.J. Parish, “A multi-layer
data fusion system for Wi-Fi attack detection using automatic belief
assignment,” World Congress on Internet Security WorldCIS 2012,
Guelph, Canada, 10-12 June 2012, pp. 45 – 50.

[9] M. Raya, I. Aad, J.-P. Hubaux, A. El Fawal, “DOMINO: Detecting MAC
Layer Greedy Behavior in IEEE 802.11 Hotspots,“ IEEE Transactions on
Mobile Computing, Vol. 5, Issue 12, pp. 1691 – 1705, Dec. 2006.

[10] .L. Montecchi, N. Nostro, A. Ceccarelli, G. Vella, A. Caruso, A.
Bondavalli, “Model-based Evaluation of Scalability and Security
Tradeoffs: a Case Study on a Multi-Service Platform,” Electr. Notes
Theor. Comput. Sci. 310: 113-133 (2015)

[11] G. Thamilarasu.; S. Mishra; R. Sridhar, “A Cross-layer Approach to
Detect Jamming Attacks in Wireless Ad hoc Networks,“ Proc. of Military
Communications Conference MILCOM 2006, 23-25 Oct. 2006.

[12] Le Wang, A.M. Wyglinski, “A combined approach for distinguishing
different types of jamming attacks against wireless networks,” Proc. Of
Communications, Computers and Signal Processing Conference,
Victoria, Canada, 23-26 Aug. 2011, pp. 809 – 814.

[13] A.G. Fragkiadakis, V. A. Siris, N. E. Petroulakis, A. P. Traganitis,
“Anomaly-based intrusion detection of jamming attacks, local versus
collaborative detection,” Wireless Communications and Mobile
Computing, vol. 15, issue 2, pp. 276 – 294, 10 February 2015.

[14] D. Chen, J. Deng, and P. K. Varshney, "Protecting Wireless Networks
against a Denial of Service Attack Based on Virtual Jamming," ACM
MobiCom '03, Poster, San Diego, CA, USA, September 14-19, 2003

[15] Glenn Shafer, A Mathematical Theory of Evidence, Princeton University
Press, 1976.

[16] D. Yu, D. Frincke, “Alert confidence fusion in intrusion detection systems
with extended Dempster-Shafer theory, “ Proc. ACM 2005, Kennesaw,
GA, USA. March 18-20. 2005, pp. 142 – 147.

[17] G, Combs, Wireshark-network protocol analyzer, Website Available:
https://www.wireshark.org/ (Access Date: 19 Jun, 2015)

[18] Iperf, Website Available: https://iperf.fr/ (Access Date: 19 Jun, 2015)

[19] A.Y. Dak, N.E.A. Khalid, S. Yahya, “A novel framework for jamming
detection and classification in wireless networks, “ Proc. of Computing
and Networking Tech. ICCNT 2012, 27-29 Aug. 2012, pp. 240 –246.

 Fig. 4. DiffFSN in Scenario 6. Fig. 5. Deltatime in Scenario 4.

