1,083 research outputs found

    Matrix product state approach for a two-lead, multi-level Anderson impurity model

    Full text link
    We exploit the common mathematical structure of the numerical renormalization group and the density matrix renormalization group, namely, matrix product states, to implement an efficient numerical treatment of a two-lead, multi-level Anderson impurity model. By adopting a star-like geometry, where each species (spin and lead) of conduction electrons is described by its own Wilson chain, instead of using a single Wilson chain for all species together, we achieve a very significant reduction in the numerical resources required to obtain reliable results. We illustrate the power of this approach by calculating ground state properties of a four-level quantum dot coupled to two leads. The success of this proof-of-principle calculation suggests that the star geometry constitutes a promising strategy for future calculations the ground state properties of multi-band, multi-level quantum impurity models. Moreover, we show that it is possible to find an "optimal" chain basis, obtained via a unitary transformation (acting only on the index distinguishing different Wilson chains), in which degrees of freedom on different Wilson chains become effectively decoupled from each other further out on the Wilson chains. This basis turns out to also diagonalize the model's chain-to-chain scattering matrix. We demonstrate this for a spinless two-lead model, presenting DMRG-results for the mutual information between two sites located far apart on different Wilson chains, and NRG results with respect to the scattering matrix.Comment: extended version, 11 pages, 12 figure

    DMRG studies of Chebyshev-expanded spectral functions and quantum impurity models

    Get PDF
    This thesis is concerned with two main topics: first, the advancement of the density matrix renormalization group (DMRG) and, second, its applications. In the first project of this thesis we exploit the common mathematical structure of the numerical renormalization group and the DMRG, namely, matrix product states (MPS), to implement an efficient numerical treatment of a two-lead, multi-level Anderson impurity model. By adopting a star-like geometry, where each species (spin and lead) of conduction electrons is described by its own so-called Wilson chain, instead of a single Wilson chain we achieve a very significant reduction in the numerical resources required to obtain reliable results. Moreover, we show that it is possible to find an "optimal" chain basis, in which chain degrees of freedom of different Wilson chains become effectively decoupled from each other further out on the Wilson chains. This basis turns out to also diagonalize the model's chain-to-chain scattering matrix. In the second project we show that Chebychev expansions offer numerically efficient representations for calculating spectral functions of one-dimensional lattice models using MPS methods. The main features of this Chebychev matrix product state (CheMPS) approach are: (i) it achieves uniform resolution over the spectral function's entire spectral width; (ii) it offers a well-controlled broadening scheme; (iii) it is based on using MPS tools to recursively calculate a succession of Chebychev vectors, (iv) whose entanglement entropies were found to remain bounded with increasing recursion order for all cases analyzed here. We present CheMPS results for the structure factor of spin-1/2 antiferromagnetic Heisenberg chains and perform a detailed finite-size analysis. Making comparisons to benchmark methods, we find that CheMPS yields results comparable in quality to those of correction vector DMRG, at dramatically reduced numerical cost and agrees well with Bethe Ansatz results for an infinite system, within the limitations expected for numerics on finite systems. Following these technologically focused projects we study the so-called Kondo cloud by means of the DMRG in the third project. The Kondo cloud describes the effect of spatially extended spin-spin correlations of a magnetic moment and the conduction electrons which screen the magnetic moment through the Kondo effect at low temperatures. We focus on the question whether the Kondo screening length, typically assumed to be proportional to the inverse Kondo temperature, can be extracted from the spin-spin correlations. We investigate how perturbations which destroy the Kondo effect, like an applied gate potential or a magnetic field, affect the formation of the screening cloud. In a forth project we address the impact of Quantum (anti-)Zeno physics resulting from repeated single-site resolved observations on the many-body dynamics. We use time-dependent DMRG to obtain the time evolution of the full many-body wave function that is then periodically projected in order to simulate realizations of stroboscopic measurements. For the example of a 1-D lattice of spin-polarized fermions with nearest-neighbor interactions, we find regimes for which many-particle configurations are stabilized and destabilized depending on the interaction strength and the time between observations

    Stroboscopic observation of quantum many-body dynamics

    Get PDF
    Recent experiments have demonstrated single-site resolved observation of cold atoms in optical lattices. Thus, in the future it may be possible to take repeated snapshots of an interacting quantum many-body system during the course of its evolution. Here we address the impact of the resulting quantum (anti-)Zeno physics on the many-body dynamics. We use the time-dependent density-matrix renormalization group to obtain the time evolution of the full wave function, which is then periodically projected in order to simulate realizations of stroboscopic measurements. For the example of a one-dimensional lattice of spinless fermions with nearest-neighbor interactions, we find regimes for which many-particle configurations are stabilized or destabilized, depending on the interaction strength and the time between observations

    Kondo screening cloud in the single-impurity Anderson model: A density matrix renormalization group study

    Get PDF
    A magnetic moment in a metal or in a quantum dot is, at low temperatures, screened by the conduction electrons through the mechanism of the Kondo effect. This gives rise to spin-spin correlations between the magnetic moment and the conduction electrons, which can have a substantial spatial extension. We study this phenomenon, the so-called Kondo cloud, by means of the density matrix renormalization group method for the case of the single-impurity Anderson model. We focus on the question whether the Kondo screening length, typically assumed to be proportional to the inverse Kondo temperature, can be extracted from the spin-spin correlations. For several mechanisms -- the gate potential and a magnetic field -- which destroy the Kondo effect, we investigate the behavior of the screening cloud induced by these perturbations.Comment: updated some data, minor change

    Chebyshev matrix product state approach for spectral functions

    Get PDF
    We show that recursively generated Chebyshev expansions offer numerically efficient representations for calculating zero-temperature spectral functions of one-dimensional lattice models using matrix product state (MPS) methods. The main features of this Chebychev matrix product state (CheMPS) approach are: (i) it achieves uniform resolution over the spectral function's entire spectral width; (ii) it can exploit the fact that the latter can be much smaller than the model's many-body bandwidth; (iii) it offers a well-controlled broadening scheme; (iv) it is based on a succession of Chebychev vectors |t_n>, (v) whose entanglement entropies were found to remain bounded with increasing recursion order n for all cases analyzed here; (vi) it distributes the total entanglement entropy that accumulates with increasing n over the set of Chebyshev vectors |t_n>. We present zero-temperature CheMPS results for the structure factor of spin-1/2 antiferromagnetic Heisenberg chains and perform a detailed finite-size analysis. Making comparisons to three benchmark methods, we find that CheMPS (1) yields results comparable in quality to those of correction vector DMRG, at dramatically reduced numerical cost; (2) agrees well with Bethe Ansatz results for an infinite system, within the limitations expected for numerics on finite systems; (3) can also be applied in the time domain, where it has potential to serve as a viable alternative to time-dependent DMRG (in particular at finite temperatures). Finally, we present a detailed error analysis of CheMPS for the case of the noninteracting resonant level model.Comment: 22 pages, 13 figure

    Langzeit-Monitoring der Auswirkungen einer Umstellung auf den biologischen Landbau (MBUIL V), Abschlussbericht

    Get PDF
    Auf einem Ackerbaubetrieb im Marchfeld in Niederösterreich wird seit dem Jahr 2003 eine umfassende Langzeituntersuchung zur Dokumentation und Entwicklung des biologischen Landbaus und agrarökologischer Begleitmaßnahmen durchgeführt (www.mubil.boku.ac.at). In der Projektphase MUBIL V wurden im Jahr 2014 spezifische Themen aus dem Gesamtmonitoring ausgewählt und fortgeführt. Die Untersuchungen fanden auf Betriebs-, Schlag- und Parzellenebene statt. Die Ziele des Projektes waren: (a) Wissenschaftlich abgesicherte Erkenntnisse über das Ausmaß und die Geschwindigkeit von Veränderungen der pflanzenbaulichen Entwicklung mit der längerfristigen biologischen Bewirtschaftung zu erhalten. (b) Erkenntnisse über die Auswirkungen unterschiedliche Düngungssysteme viehloser und viehhaltender biologischer Bewirtschaftung mithilfe pflanzenbaulicher Untersuchungen über vergleichende Versuchsanstellungen zu erlangen. (c) Erkenntnisse über die Wirkungen von Blühstreifen mit unterschiedlichen Ansaatmischungen und Pflegemaßnahmen auf die Wildbienen zu dokumentieren

    The accuracy of frozen section analysis in ultrasound- guided core needle biopsy of breast lesions

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Limited data are available to evaluate the accuracy of frozen section analysis and ultrasound- guided core needle biopsy of the breast.</p> <p>Methods</p> <p>In a retrospective analysis data of 120 consecutive handheldultrasound- guided 14- gauge automated core needle biopsies (CNB) in 109 consecutive patients with breast lesions between 2006 and 2007 were evaluated.</p> <p>Results</p> <p>In our outpatient clinic120 CNB were performed. In 59/120 (49.2%) cases we compared histological diagnosis on frozen sections with those on paraffin sections of CNB and finally with the result of open biopsy. Of the cases 42/59 (71.2%) were proved to be malignant and 17/59 (28.8%) to be benign in the definitive histology. 2/59 (3.3%) biopsies had a false negative frozen section result. No false positive results of the intraoperative frozen section analysis were obtained, resulting in a sensitivity, specificity and positive predicting value (PPV) and negative predicting value (NPV) of 95%, 100%, 100% and 90%, respectively. Histological and morphobiological parameters did not show up relevance for correct frozen section analysis. In cases of malignancy time between diagnosis and definitive treatment could not be reduced due to frozen section analysis.</p> <p>Conclusion</p> <p>The frozen section analysis of suspect breast lesions performed by CNB displays good sensitivity/specificity characteristics. Immediate investigations of CNB is an accurate diagnostic tool and an important step in reducing psychological strain by minimizing the period of uncertainty in patients with breast tumor.</p

    Status Report of the DPHEP Study Group: Towards a Global Effort for Sustainable Data Preservation in High Energy Physics

    Full text link
    Data from high-energy physics (HEP) experiments are collected with significant financial and human effort and are mostly unique. An inter-experimental study group on HEP data preservation and long-term analysis was convened as a panel of the International Committee for Future Accelerators (ICFA). The group was formed by large collider-based experiments and investigated the technical and organisational aspects of HEP data preservation. An intermediate report was released in November 2009 addressing the general issues of data preservation in HEP. This paper includes and extends the intermediate report. It provides an analysis of the research case for data preservation and a detailed description of the various projects at experiment, laboratory and international levels. In addition, the paper provides a concrete proposal for an international organisation in charge of the data management and policies in high-energy physics

    Search for supersymmetry in events with b-quark jets and missing transverse energy in pp collisions at 7 TeV

    Get PDF
    Results are presented from a search for physics beyond the standard model based on events with large missing transverse energy, at least three jets, and at least one, two, or three b-quark jets. The study is performed using a sample of proton-proton collision data collected at sqrt(s) = 7 TeV with the CMS detector at the LHC in 2011. The integrated luminosity of the sample is 4.98 inverse femtobarns. The observed number of events is found to be consistent with the standard model expectation, which is evaluated using control samples in the data. The results are used to constrain cross sections for the production of supersymmetric particles decaying to b-quark-enriched final states in the context of simplified model spectra.Comment: Submitted to Physical Review

    Collision skin lesions-results of a multicenter study of the International Dermoscopy Society (IDS)

    Get PDF
    Background: Collision lesions as two independent and unrelated skin tumors often manifest an atypical morphology. Objective: To determine the combinations of collision skin lesions (CSLs). Methods: Twenty-one pigmented lesion clinics in nine countries included 77 histopathologically proven CSLs in this retrospective observational study. Results: Seventy-seven CSLs from 75 patients (median age 59.8 years) were analyzed; 24.7% of CSLs were located on the head and neck area, 5.2% on the upper extremities, 48.1% on the trunk, and 11.7% on the lower extremities; 40.3% revealed a melanocytic component (median age 54.7 years), followed by 45.5% with a basal cell carcinoma (BCC) (median age 62.4 years) and 11.7% with a seborrheic keratosis (median age 64.7 years). CSLs with a BCC component were more often found on the head and neck area compared to tumors with a melanocytic component (34.3% versus 16.1%). Lesions with a melanocytic component were more often detected on the trunk compared to lesions with a BCC (64.5% versus 37.1%). Patients with CSLs with epidermal-epidermal cell combination were older than patients with epidermal-dermal cell combination (63 versus 55.2 years), were more often male than female (63% versus 43.3%), more often had the lesion on the head and neck area (32.6% versus 13.3%), and less often on the upper (2.2 % versus 10%) or lower extremities (8.7% versus 16.6%). Conclusions: CSLs consist of a heterogeneous group of lesions of varying cell types. They are associated with advancing age and cumulative UV-exposure. CSLs manifest a complex morphology making it challenging to diagnose correctly
    corecore