
RAPID COMMUNICATIONS

PHYSICAL REVIEW A 85, 011605(R) (2012)

Stroboscopic observation of quantum many-body dynamics
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Recent experiments have demonstrated single-site resolved observation of cold atoms in optical lattices. Thus,
in the future it may be possible to take repeated snapshots of an interacting quantum many-body system during the
course of its evolution. Here we address the impact of the resulting quantum (anti-)Zeno physics on the many-body
dynamics. We use the time-dependent density-matrix renormalization group to obtain the time evolution of the full
wave function, which is then periodically projected in order to simulate realizations of stroboscopic measurements.
For the example of a one-dimensional lattice of spinless fermions with nearest-neighbor interactions, we find
regimes for which many-particle configurations are stabilized or destabilized, depending on the interaction
strength and the time between observations.
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Introduction. In the last few years ultracold atoms in optical
lattices have proven to be a versatile tool for studying various
quantum many-body phenomena [1,2]. Recently, tremendous
progress has been achieved by implementing single-site
resolved detection [3,4] and addressing [5] of atoms. Taken
to the next, dynamic level, one may envision observing the
evolution of nonequilibrium quantum many-body states via
periodic snapshots revealing the position of each single atom.
For simpler systems, the effect of frequent observations on
the decay of an unstable state (or on the dynamics of a driven
transition) has already been discussed and observed, leading
to the notion of the quantum (anti-)Zeno effect [6–9]. Zeno
physics has also been seen in cold-atom experiments with
atomic loss channels [10] and was theoretically addressed in
Ref. [11–14]. Experiments with single-site detection, however,
would reveal the effect of observations on the dynamics of a
truly interacting quantum many-body system. Here we exploit
a numerically efficient approach to simulating the repeated
observation of many-particle configurations in interacting
lattice models. This represents an idealized version of the
dynamics that may be realized in future experiments. We
elaborate the main features of this “stroboscopic” many-body
dynamics in the case of a one-dimensional (1D) lattice of
spin-polarized fermions with nearest-neighbor interactions.
We find a variant of the quantum Zeno effect and discuss
its tendency to inhibit or accelerate the breakup of certain
many-particle configurations. In particular, the decay rate of
these configurations depends in a nonmonotonous fashion on
the time interval between observations. Later, we show that
a similar behavior is expected for the Fermi-Hubbard and
Bose-Hubbard model. The discussed features may be seen,
e.g., in the expansion of interacting atomic clouds in a lattice.

Model. In this paper, we study spin-polarized fermions in a
1D lattice governed by the Hamiltonian

Ĥ = −J
∑

i

(ĉ†i ĉi+1 + H.c.) + V
∑

i

n̂i n̂i+1. (1)

The first term describes hopping with amplitude J between
adjacent sites, the second encodes the interaction between

fermions at neighboring sites, with n̂i = ĉ
†
i ĉi . The Hamiltonian

displays a dynamical V �→ −V symmetry which shows up
in expansion experiments [15]. Following analogous steps as
in Ref. [15], we can conclude that if both the initial state
and the experimentally measured quantity Ô are invariant
under both time reversal and π boost (a translation of all
momenta by π ), the observed time evolution 〈Ô(t)〉 is identical
for repulsive and attractive interactions of the same strength.
The initial occupation number states and the n-particle density
observables in our case fall within the scope of this theorem.
Thus, the only relevant dimensionless parameters are |V/J |
and the rescaled time between observations, J�t .

Single particle. We first briefly turn to the single-particle
case, in which Eq. (1) leads to a tight-binding band E(k) =
−2J cos(k). A particle located initially at a single site is in a
superposition of all plane-wave momenta k = −π . . . π . After
a time t , the probability of detecting it at a distance l from
the initial site is ρ(l,t) = J 2

|l|(2J t), where J is the Bessel
function of the first kind. This is shown in Fig. 1(a). The particle
moves ballistically, with 〈l2〉 = 2(J t)2. When the particle is
observed repeatedly, at intervals �t , the ballistic motion turns
into diffusion. In this case, after m time steps of duration �t =
t/m, we have 〈l2〉 = 2J 2t �t . Thus the motion slows down,
and in the limit of an infinite observation rate, the particle is
frozen, which is known as the quantum Zeno effect.

Simulation. Ideally, each observation is a projective mea-
surement in the basis of many-particle configurations (oc-
cupation number states in real space). To generate such
measurement outcomes in a numerically efficient way, we start
by randomly drawing the position of the first particle from
a distribution given by the one-particle density. Afterward,
we draw the position of the second particle, conditioned on
the location of the first one, and proceed iteratively (see
Supplemental Material [16] for details). For the interacting
many-body case to be discussed now, we use the time-
dependent density-matrix renormalization group (tDMRG)
[17–20] to calculate the joint probabilities and the time
evolution between observations. We choose a time step of
Jδt = 0.1 and a lattice of typically 115 sites, and we keep up
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FIG. 1. (Color online) Time evolution of the density profile of
fermions expanding in a lattice without observation, (a) for a single
fermion; (b)–(d) for 13 fermions, initially located at adjacent lattice
sites, calculated for several interaction strengths.

to approximately 1000 states, at a truncation error of 10−6. For
the dynamics of noninteracting fermions, an exact formula can
be used (see Supplemental Material [16]). Note that tDMRG
has been employed recently for dissipative dynamics of cold
atoms [21,22].

Stroboscopic many-body dynamics. We will focus on the
expansion of an interacting cloud from an initially confined
state. For two-species fermions, such an expansion has been
recently observed in 2D [15] and theoretically discussed
for 1D [23]. We will first briefly address the evaporation
itself and then discuss qualitatively the resulting stroboscopic
dynamics, with a more refined analysis presented further
below. Figures 1(b)–1(d) show the effect of the interaction
on the unmeasured time evolution of the density profile. For
increasing interaction the fermions tend to remain localized
near their initial positions. For interaction strengths |V/J | � 3
and the times shown here, J t < 16, a more detailed analysis
reveals that evaporation proceeds via the rare event of a single
fermion dissociating from the edge of the cloud. The particle
then moves away ballistically. This evaporation process is
hindered by the formation of bound states. This is a crucial
phenomenon that we will also encounter in the context
of repeated measurements. For smaller interaction strengths
(|V/J | � 2), the fermions split gradually into a larger and
larger number of clusters as time increases. The parameter
regimes in which the model (1) exhibits diffusive or ballistic
transport was addressed using tDMRG in Ref. [24].

The effects of stroboscopic observation are shown in
Fig. 2, for typical realizations of this stochastic process. For
noninteracting fermions we find the behavior expected from
the single-particle case. The spread (and thus, the diffusion
constant) increases with larger observation time intervals J�t .
For very small J�t (strong Zeno effect), the motion is diffusive
with a small diffusion constant that becomes independent of
|V/J |. In general, it is useful to discuss the initial decay rate
of the cluster that evaporates via expansion. For the interacting
case, this decay rate is largest at some finite observation time
interval J�t [Figs. 2(g) and 2(i)], while it is reduced for large
J�t [Figs. 2(h) and 2(l)]. Apparently, at very large |V/J |,
the initial decay rate may have yet another local minimum
for intermediate J�t , see Fig. 2(j). We confirm this striking
nonmonotonous behavior of the initial decay rate by simulating
400 realizations for each panel shown in Fig. 2 and plot the
average number of fermions at the central 15 lattice sites as
a function of time, in Fig. 3. For sufficiently large |V/J |,
this number decays roughly linearly at a rate that sets the
initial decay rate. We will see that these features can be mainly
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FIG. 2. (Color online) Specific realizations of the expansion of
13 fermions with site-resolved detection during the evolution. We
show the full evolution of density even between observations, which
collapse the many-body wave function at regular time intervals J�t

[indicated by the dashed lines in panel (h)]. Without interaction
[panels (a)–(d)], the initial decay rate of the configuration increases
for larger J�t , while for large interaction |V/J | the decay rate is
biggest for finite J�t [(g), (i)]. For small J�t the dynamics becomes
independent of |V/J |, see (a), (e), (i).

attributed to a bound state and the two-level dynamics between
the initial state and the state with a fermion detached from the
others.

Doublets and the role of interactions. The effect of
interactions can be discussed already for the stroboscopic
dynamics of two fermions. We focus on the decay of a doublet,
i.e., two fermions sitting at neighboring sites.

In the quantum Zeno limit, J�t �1 (or J�t � |2J/V |
for large |V |, see below), only single hopping events occur
during �t . The probability for a fermion hopping left or right
in this time interval is 2(J�t)2. Thus, the average decay time
of a doublet is 〈J t〉 = 1/(2J�t), independent of V . This result
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FIG. 3. (Color online) For the expansion process of Fig. 2, the
average number of fermions remaining at the 15 central lattice sites is
shown as function of the evolution time J t for different observation
time intervals J�t . Thin dotted lines correspond to expansions
without observation. (a) Without interactions, the initial decay rate
increases monotonically with J�t . (b) At V/J = 3.8, the decay
rate first increases, then decreases with J�t . (c) At V/J = 9, the
decay rate is nonmonotonous even for intermediate J�t ; compare
J�t = 0.3,0.7,1.0. Note that the lines in (a)–(c) are almost identical
for J�t = 0.1.
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FIG. 4. (Color online) (a) Doublet decay level scheme. The
doublet is separated from the continuum of unbound states by an
energy gap V . (b) Probability PD of finding the doublet intact after
evolution time J t . Dashed horizontal lines show PD(∞) found in
Eq. (3). (c) Single trajectory of PD for a time evolution subject to
observations. (d) Doublet survival probability PD as function of the
observation time interval J�t � 0.02 for a fixed total evolution time
J t = 18. Note the nonmonotonous dependence on J�t for finite
interactions.

holds also for clusters of more fermions, where the leftmost and
rightmost fermion dissolves with probability (J�t)2 during �t

[cf. Figs. 2(a), 2(e), and 2(i)].
For larger J�t , the interaction will become important,

which gives rise to a bound state (this effect also exists
for clusters of more particles [25]). Considering the ba-
sis |l,K〉 = 1√

N
∑

j exp{iK[j + l/2]}c†j c†j+l |vac〉 of the two-
particle sector with (positive) relative coordinate l, center-
of-mass (c.m.) coordinate j + l/2, and total wave number
K = (k1 + k2) mod 2π , the action of the Hamiltonian (1) is
Ĥ|l,K〉 = |K〉 ⊗ ĤK |l〉. The first part describes a plane wave
with wave number K , the second the relative motion given by

ĤK |l〉 = −2JK [|l + 1〉 + (1 − δl,1)|l − 1〉] + V δl,1|l〉, (2)

with K-dependent hopping amplitude JK = J cos(K/2). A
bound state exists if |V | � |2JK |. It is given by |ψK〉 ∝∑∞

l=1(−2JK/V )l−1|l〉. We now discuss the decay of a
doublet [see Fig. 4(a)] by means of the doublet survival
probability PD(t), i.e., the probability of finding the dou-
blet intact after time t . Without observations, PD(t) =∑

L′ |〈l = 1,L′|e−iĤt |l = 1,L〉|2, where L and L′ are c.m.
coordinates. Thus, in the limit t → ∞, we find PD(∞) =

1
2π

∫ 2π

0 dK|〈ψK |l = 1〉|4. Specifically for large interaction
|V/2J | � 1, we have

PD(∞) = 1 − (2J/V )2 + 3
8 (2J/V )4. (3)

While PD(∞) is determined by the bound state, the evolution
for times J t < 1 can be approximated by the two-level
dynamics between |l = 1〉 and |l = 2〉. This gives

PD(t) = 1 − 1

π

∫ π

0
dK

cos2(K/2)

ξ 2
K

sin2(2ξKJ t), (4)

with ξK = [(V/4J )2 + cos2(K/2)]1/2. In the strongly inter-
acting regime we find three regions for the doublet survival
probability: for times J t � ξ−1

K=0 the probability is inde-
pendent of the interaction strength, PD(t) = 1 − 2(J t)2; for
times ξ−1

K=0 � J t � 1 one expects an oscillating behavior
of PD(t) given by Eq. (4) with a period approximately 2π

V

for |V/4J | � 1; and for J t � 1 the probability approaches
PD(∞). The full evolution of PD(t) using exact diagonaliza-
tion is shown in Fig. 4(b). PD(t) is interaction independent at
times J t � ξ−1

K=0/2. Temporal oscillations in PD(t) develop for
higher interaction strengths (V/J � 3.5). These oscillations
suggest that in the presence of stroboscopic observations,
illustrated in Fig. 4(c), the survival probability will depend
nonmonotonically on the observation time interval. This effect
is confirmed in Fig. 4(d). In that figure, the observation time
interval J�t is varied, while keeping the total evolution
time constant, J t = 18 (with a corresponding number of
observations t/�t). The stroboscopic evolution is interaction
independent for small J�t . For larger J�t there is a drastic
recovery of PD in the strong interacting case, which can show
oscillations as a function of J�t . This behavior agrees with the
one of clusters of more fermions, see Figs. 2 and 3, and does
not depend in detail on the total time J t . Thus we have found
and explained the most prominent features of the stroboscopic
many-body dynamics in our discussion of the doublet.

Furthermore, the motion of whole clusters of fermions
through the lattice and the exchange of fermions between
clusters can be observed in the stroboscopic dynamics, as
shown in Fig. 5. As expected, clusters are very stable for high
interaction strengths. The hopping amplitude for a cluster of n

fermions is of order J n/|V |n−1, decreasing strongly for larger
clusters, as can be perceived in Fig. 5(c).

Expectations for other models. The previously discussed
nonmonotonic decay of a cluster is not unique for our model
(1), but can also be observed in the Fermi-Hubbard (FH) and
Bose-Hubbard (BH) models. In the following we will consider
clusters of doubly occupied sites in 1D. The dissolution of a
single particle from the edge of the cluster is well described by
considering the survival probability of a doublon (fermionic or
bosonic double occupancy). Using a similar analysis as for the
doublets, one finds qualitatively the same behavior as shown
in Fig. 4(b). However, this description is not sufficient to un-
derstand the decay of clusters. It does not include the escape of
paired particles, which leads to a complete decay of the cluster
in the long time limit even for large onsite interaction. It also
neglects tunneling of bosons between occupied sites. In the FH
model the cluster is initially Pauli blocked [as in model (1)],
such that the dynamics is restricted to the edges. The escape
of single fermions or doublons can be well approximated by
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FIG. 5. (Color online) Density plot for the time evolution of
an initial state with clusters of different numbers of fermions and
observation time interval J�t = 2. For large interaction strength
[panels (b) and (c)], we find clusters moving as a whole (indicated
by triangles). Ovals indicate processes where single fermions are
exchanged between clusters or attached to a new cluster.
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FIG. 6. (Color online) Destruction of a cluster in the 1D Fermi-
Hubbard (a) and Bose-Hubbard model (b). We show the probability
to detect a cluster of five doublons, see insets, in its initial state as a
function of time for different onsite interaction strengths V.

the Hubbard dimer model, see [23]. The associated probability
is sin2[

√
V 2 + (4J )2t/2]/[2 + 2(J/4V )2] for single fermions

(at times J t � 1) and for doublons it is (J t)4 for J t � J/V

and 4(J 2t/V )2 at J/V � J t � 1. We numerically verified
that this oscillating behavior of the single fermion escape leads
to a nonmonotonic decay of the cluster for onsite interaction
strengths V/J � 4, see Fig. 6(a). The probability for an initial
bosonic cluster configuration of N sites to be destroyed is
for short times given by 4[1 + 3(N − 1)](J t)2. The first term
in brackets stems from a single boson escaping from the
edge, while the second and larger contribution comes from
a boson tunneling between occupied sites. For larger times we
studied numerically the destruction of clusters [see Fig. 6(b)]
and find that the survival probability of the initial cluster
configuration displays a nonmonotonic behavior for V/J � 6
with a pronounced local minimum at t ≈ π/V (about half
the oscillation period for the dissolution of a boson and

tunneling of a boson between doubly occupied sites), and the
cluster is destroyed primarily via “internal” hopping processes.
Both models show a strong nonmonotonic behavior of the
cluster decay probability for large onsite interaction strengths.
Thus, by tuning the time interval between observations in a
stroboscopic measurement, one is able to enhance and suppress
the decay of clusters, or even different decay channels of the
cluster.

Experimental realization and outlook. The Hamiltonian (1)
is related to the Heisenberg XXZ model by Wigner-Jordan
transformation. The stroboscopic dynamics is identical for
both models as the outcome of observations depends only on
spatial density-density correlations. These Hamiltonians can
be experimentally realized in optical lattices with fermionic
polar molecules [26] or two-species fermions or bosons in
the insulating phase [27,28]. For both realizations single-site
detection has not yet been implemented, but experimental
progress is being made toward this goal. Experimentally,
the most challenging step needed to observe the interplay of
many-body dynamics and measurements discussed here would
be to make the observations nondestructive, whereas currently
atoms are heated into higher site orbitals and atom pairs are
lost due to light-induced collisions [3,4]. Beyond the scenarios
discussed here, one may also be interested in the influence of
external driving or measurements that either are weak or target
only specific sites.
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