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We show that recursively generated Chebyshev expansions offer numerically efficient representations for
calculating zero-temperature spectral functions of one-dimensional lattice models using matrix product state
(MPS) methods. The main features of this Chebyshev matrix product state (CheMPS) approach are as follows:
(i) it achieves uniform resolution over the spectral function’s entire spectral width; (ii) it can exploit the fact that
the latter can be much smaller than the model’s many-body bandwidth; (iii) it offers a well-controlled broadening
scheme that allows finite-size effects to be either resolved or smeared out, as desired; (iv) it is based on using MPS
tools to recursively calculate a succession of Chebyshev vectors |tn〉, (v) the entanglement entropies of which
were found to remain bounded with increasing recursion order n for all cases analyzed here; and (vi) it distributes
the total entanglement entropy that accumulates with increasing n over the set of Chebyshev vectors |tn〉, which
need not be combined into a single vector. In this way, the growth in entanglement entropy that usually limits
density matrix renormalization group (DMRG) approaches is packaged into conveniently manageable units.
We present zero-temperature CheMPS results for the structure factor of spin- 1

2 antiferromagnetic Heisenberg
chains and perform a detailed finite-size analysis. Making comparisons to three benchmark methods, we find that
CheMPS (a) yields results comparable in quality to those of correction-vector DMRG, at dramatically reduced
numerical cost; (b) agrees well with Bethe ansatz results for an infinite system, within the limitations expected
for numerics on finite systems; and (c) can also be applied in the time domain, where it has potential to serve as a
viable alternative to time-dependent DMRG (in particular, at finite temperatures). Finally, we present a detailed
error analysis of CheMPS for the case of the noninteracting resonant level model.
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I. INTRODUCTION

Consider a one-dimensional lattice model amenable to
treatment by the density matrix renormalization group
(DMRG),1–4 with Hamiltonian Ĥ , ground state |0〉, and
ground-state energy E0. This paper is concerned with zero-
temperature spectral functions of the form

ABC(ω) = 〈0|B̂ δ(ω − Ĥ + E0) Ĉ|0〉, (1)

which represents the Fourier transform
∫

dt
2π

eiωtGBC(t) of the
correlator

GBC(t) = 〈0|B̂(t)Ĉ(0)|0〉. (2)

One possible framework for calculating such spectral functions
is to expand them in terms of Chebyshev polynomials, as
advocated in Ref. 5. Such a Chebyshev expansion offers
precise and convenient control of the accuracy and resolution
with which a spectral function is to be computed. This is very
useful, particularly when broadening the spectral function of
a length-L system, which exhibits finite-size subpeaks with
spacing ωL ∼ 1/L, in order to mimic that of an infinite
system. If the latter has structures (e.g., sharp or diverging
peaks), which are not yet properly resolved at the scale
ωL, the broadened version of the finite-size spectral function
inevitably bears L-dependent errors in the vicinity of these
structures. Hence, when calculating the finite-size version of
these structures for the length-L system, there is no need to
achieve an accuracy beyond that of the expected L-dependent
errors, and having convenient control of this accuracy can
significantly reduce numerical costs.

In this paper, we show that Chebyshev expansions offer
numerically efficient representations for calculating spectral
functions using matrix product state (MPS) methods,4,6–10

with numerical costs that compare favorably to those of
other established DMRG-based approaches. In particular,
the Chebyshev MPS approach presented here, to be called
CheMPS, allows the above-mentioned control of accuracy
and resolution to be imported into the DMRG and MPS
arena.

The historically first approach for calculating spectral func-
tions with DMRG is the continued-fraction expansion.11 While
this method requires only modest numerical resources, it is
limited to low frequencies and it is difficult to produce reliable
results with it in the case of continua (however, algorithmic
improvements were reported recently12). At present, the most
accurate, but also most time-consuming, approaches are (i) the
correction-vector (CV) method13–15 and (ii) time-dependent
DMRG (tDMRG),7,9,16–18 in particular, when combined with
linear prediction techniques.19–22 Since any new approach
must measure up to their standards, let us briefly summarize
their key ideas, advantages, and drawbacks.

(i) To calculate ABC(ω) using the CV approach, it is
expressed as

ABC(ω) = 〈0|B̂|C〉ω (3a)
in terms of the so-called correction vector

|C〉ω ≡ − lim
η→0

1

π
Im

[
1

ω − Ĥ + E0 + iη

]
Ĉ|0〉. (3b)

The correction vector can be calculated (for finite broadening
parameter η) using either conventional DMRG (Refs. 13–15)
or variational matrix product state (MPS) methods.23 A major
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advantage of this approach is that arbitrarily high spectral
resolution can be achieved by reducing η and sampling
enough frequency points. However, this comes at considerable
numerical costs: first, a separate calculation is required for
every choice of ω (although, in doing so, results for |C〉ω’s
from previous frequencies can be incorporated); and second,
the calculation of |C〉ω involves an operator inversion problem
that is numerically poorly conditioned, ever more so the
smaller η is.

(ii) An alternative possibility is to use tDMRG to calculate
the time-domain correlator GBC(t), Fourier transforming to
the frequency domain only at the very end. To this end, one
expresses

GBC(t) = eiE0t 〈0|B̂|C̃〉t (4a)
in terms of the time-evolved state

|C̃〉t ≡ e−iĤ t Ĉ|0〉 (4b)

and uses tDMRG to calculate the latter. Two attractive features
of this strategy are as follows: first, it builds on an extensive
body of algorithmic knowledge for efficiently calculating
time evolution,7,16,17 and, second, a simple linear-prediction
scheme19–22 can be used to extrapolate the time dependence
calculated for short and intermediate time scales to longer
times, thereby improving the quality of results at low frequency
at hardly any additional numerical cost. However, obtaining
reliable results over a sufficiently large time interval can, in
itself, be numerically very expensive, since the time evolution
of the many-body state |C̃〉t is accompanied by a strong growth
in entanglement entropy. This unavoidably also implies a
growth of tDMRG truncation errors.

Note that, in both of the schemes outlined above, significant
(often heroic) amounts of numerical resources are devoted to
calculating a single state |C〉ω for given ω or |C̃〉t for given t ,
as accurately as possible; the overlaps or expectation values of
interest, namely, 〈0|B̂|C〉ω for 〈0|B̂|C̃〉t , are only calculated
at the end, in a single, final step after |C〉ω or |C̃〉t have
been fully determined. Actually, these states are calculated
so accurately that they would have been equally suitable for
calculating any other quantity (correlator or matrix element)
involving that state. In a sense, DMRG is asked to work
harder than necessary; it is used to calculate a single state with
“general-purpose accuracy,” whereas the accurate calculation
of a particular expectation value involving that state would
have been sufficient.

The main motivation for this paper is to attempt to reduce
this calculational overhead by employing a representation
of the spectral function that avoids the need for calculating
a single state with such high accuracy and instead allows
numerical resources to be focused directly on the calculation of
the relevant expectation values. This can be achieved by repre-
senting the spectral function via a Chebyshev expansion,5,24,25

the coefficients of which, the so-called Chebyshev moments,
can be calculated recursively using MPS tools. Below, we
briefly summarize the structure and main features of such
an expansion, thereby providing both an introduction and an
overview of the material developed in detail in the main part
of this paper.

The Chebyshev polynomials Tn(x) form an orthonormal set
of polynomials on the interval x ∈ [−1,1]. They are very well
studied mathematically,26–28 and are widely used for function

(a)

(b)

FIG. 1. (Color online) (a) Sketch of a spectral function, the
spectral width WA of which is much smaller than the many-body
bandwidth W . Before making a Chebyshev expansion, we rescale the
interval ω ∈ [0,W∗], with effective bandwidth W∗ = 2WA, onto the
interval ω′ ∈ [−W ′,W ′], shown in (b), with rescaled half-bandwidth
W ′ = 1 − 1

2 εt and a safety factor εt 
 0.025.

expansions since they have very favorable convergence proper-
ties. As will be described in detail below, the spectral function
can be represented approximately by a so-called Chebyshev
expansion, which becomes exact for N → ∞, of the following
form:

ABC
N (ω) = 2W ′/W∗

π
√

1 − ω′2

[
g0μ0 + 2

N−1∑
n=1

gnμnTn(ω′)

]
. (5)

Here, the Chebyshev moments μn = 〈0|B̂|tn〉 are obtained
from the Chebyshev vectors |tn〉 = Tn(Ĥ ′)Ĉ|0〉, and the gn are
known damping factors that influence broadening effects. The
primes indicate that the Hamiltonian Ĥ and frequency ω were
expressed in terms of rescaled and shifted versions Ĥ ′ and ω′
in such a manner that an interval ω ∈ [0,W∗], which contains
the entire spectral weight, is mapped onto a rescaled band
ω′ ∈ [−W ′,W ′] of half-width W ′ < 1.

This representation has several useful features:

(i) It resolves the interval ω ∈ [0,W∗] with a uniform
resolution of O(W∗/N ).

(ii) The range of frequencies over which the spectral
function has nonzero weight, say WA (to be called its spectral
width), is often significantly smaller than the many-body
bandwidth of the Hamiltonian, say W , as depicted in Fig 1. By
choosing the effective bandwidth W∗ to be of order WA instead
of W , huge gains in resolution are possible.
(iii) A well-controlled broadening scheme, encoded in the

damping factors gn, is available that allows finite-size effects
to be either resolved or smeared out, as desired.

(iv) The Chebyshev vectors |tn〉 are calculated using a (nu-
merically stable) recursion scheme, which exploits Chebyshev
recurrence relations to calculate |tn〉 from H ′|tn−1〉 and |tn−2〉
[see Eq. (30)]. Thus, the expectation values from which the
spectral function is constructed are built up in a series of
recursive steps [see Eq. (7) below] instead of being calculated
at the end in one final step.

(v) The bond entropy of successive Chebyshev vectors
|tn〉 is found empirically to remain bounded with increasing
recursion number n, thus, the complexity of these vectors
remains manageable up to arbitrarily large n.
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(vi) Finally, and from the perspective of numerical costs,
most importantly, CheMPS efficiently copes with the growth
in bond entropy with increasing iteration number that usually
limits DMRG approaches. It does so by distributing this
entropy over all |tn〉, thereby packaging it into manageable
units [see (v)]. In particular, when constructing and using the
states |tn〉, one never needs to know more than three at a time
(and after use may delete them from memory). Hence, it is not
necessary to combine all information contained in all |tn〉 into
a single MPS.

Let us contrast this with the CV or tDMRG approaches:
imagine expanding the correction-vector or time-evolved state
in terms of the Chebyshev vectors |tn〉, i.e., expressing them
as linear combinations of the form

|C〉ω 

N−1∑
n=0

Cn
ω|tn〉, |C̃〉t 


N−1∑
n=0

C̃n
t |tn〉, (6)

respectively. (The coefficients Cn
ω and C̃n

t are related by Fourier
transformation.) Now, the CV or tDMRG approaches, in effect,
attempt to accurately represent the entire linear combination
using a single MPS. This endeavor is numerically very costly
since the entanglement entropy of this linear combination
grows rapidly with N . The Chebyshev approach avoids this
problem by taking expectation values before performing the
sum on n:

〈0|B̂|Ĉ〉ω 

N−1∑
n=0

Cn
ωμn, 〈0|B̂|C̃〉t 


N−1∑
n=0

C̃n
t μn. (7)

Thus, the Chebyshev expansion very conveniently organizes
the calculation into many separate and, hence, numerically less
costly, packages or subunits.

Our paper is organized as follows. We introduce the
Chebyshev expansion for spectral functions in Sec. II and
discuss its implementation using MPS, including an algorithm
for performing a projection in energy, in Sec. III. In Sec. IV,
we present CheMPS results for the structure factor of a spin- 1

2
Heisenberg chain, perform a detailed analysis of finite-size
effects (see Fig. 5), and compare our results to CV, Bethe
ansatz, and tDMRG (see Figs. 4, 6, and 8, respectively). In
Sec. V, we perform an extensive error analysis of the CheMPS
approach using the quadratic resonant level model, and discuss
some salient features of density matrix eigenspectra in Sec. VI.
Section VII summarizes our main conclusions, and Sec. VIII
presents a brief outlook toward possible future applications,
involving time dependence or finite-temperature correlators.
An appendix gives a detailed account of CheMPS results for
the resonant level model used for the error analysis of Sec. V.

II. CHEBYSHEV EXPANSION OF ABC(ω)

A. Chebyshev basics

Let us start by briefly summarizing those properties of
Chebyshev polynomials that will be needed below. We follow
the notation of Ref. 5, which gives an excellent general
discussion of Chebyshev expansion techniques (although
without mentioning possible DMRG and MPS applications).

-1

 0

 1

-1 -0.5  0  0.5  1

T
n(

x)

x

(a)
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102

-1.5 -1 -0.5  0  0.5  1  1.5
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⎪
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FIG. 2. (Color online) Chebyshev polynomials of the first kind,
Tn(x), for n up to 8. (a) All zeros and extrema of every Tn(x) are
located within the interval I = [−1,1], and all extremal values equal
1 or −1. (b) Chebyshev polynomials |Tn(x)| for x ∈ [−1.5,1.5]. The
|Tn>0(x)| grow rapidly when |x| increases beyond 1.

Chebyshev polynomials of the first kind, Tn(x), henceforth
simply called Chebyshev polynomials, are defined by the
recurrence relations

Tn+1(x) = 2xTn(x) − Tn−1(x),

T0(x) = 1, T1(x) = x. (8)

They also satisfy the useful relation (for n � n′)

Tn+n′ (x) = 2Tn(x)Tn′(x) − Tn−n′ (x). (9)

Two useful explicit representations are

Tn(x) = cos [n arccos(x)] = cosh [n arccosh(x)] . (10)

On the interval I = [−1,1], the Chebyshev polynomials
constitute an orthogonal system of polynomials (over a weight
function (π

√
1 − x2)−1), in terms of which any piecewise

smooth and continuous function f (x)|x∈I can be expanded.
In fact, the Tn(x) are optimally suited for this purpose since
they have the unique property (setting them apart from other
systems of orthogonal polynomials) that on I their values are
confined to |Tn(x)| � 1, with all extremal values equal to 1
or −1. This is evident from the first equality in Eq. (10); the
second equality implies that, for x /∈ I , |Tn(x)| grows rapidly
with increasing |x|. These properties are illustrated in Fig. 2.

There are several ways of constructing Chebyshev approx-
imations for f (x)|x∈I (see Weisse et al.,5 Sec. II A). The
Chebyshev expansion that is practical for present purposes
has the form

f (x) = 1

π
√

1 − x2

[
μ0 + 2

∞∑
n=1

μnTn(x)

]
, (11)
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where the Chebyshev moments μn are given by

μn =
∫ 1

−1
dxf (x)Tn(x). (12)

An approximate representation of order N is obtained for
f (x) if only the first N terms (i.e., n � N − 1) are retained.
However, such a truncation, in general, introduces artificial
oscillations of period 
 1/N called Gibbs oscillations. These
can be smoothed by employing certain broadening kernels,
which, in effect, rearrange the infinite series (11) before
truncation. This leads to a reconstructed expansion of the form

fN (x) = 1

π
√

1 − x2

[
g0μ0 + 2

N−1∑
n=1

gnμnTn(x)

]
, (13)

which (for properly chosen kernels) converges uniformly:

max
−1<x<1

|f (x) − fN (x)| N→∞−→ 0. (14)

The reconstructed series (13) contains the same Chebyshev
moments μn as Eq. (12), but they are multiplied by damping
factors gn, real numbers with a form that is characteristic of
the chosen kernel. Several choices have been proposed, which
damp out Gibbs oscillations in somewhat different ways (see
Ref. 5 for details). We will mostly employ Jackson damping,
given by

gJ
n = (N − n + 1) cos πn

N+1 + sin πn
N+1 cot π

N+1

N + 1
. (15)

This is usually the best choice since it guarantees an integrated
error of O( 1

N
) for fN (x). When used to approximate a δ

function δ(x − x̄) sitting at x̄ ∈ I , Jackson damping yields
a nearly Gaussian peak of width

√
1 − x̄2 π/N . On one

occasion, we will also employ Lorentz damping

gL
n,λ = sinh

[
λ

(
1 − n

N

)]
sinh λ

, (16)

where λ is a real parameter. Lorentz damping preserves
analytical properties (causality) of Green’s function and
broadens a δ function δ(x − x̄) into a peak, the shape of which,
for the choice λ = 4 used here (following Ref. 5), is nearly
Lorentzian of width

√
1 − x̄2 λ/N .

To summarize: The order-N Chebyshev reconstruction
fN (x) with Jackson or Lorentzian damping with λ = 4 yields
a result that is very close to the broadened function

f X
N (x) =

∫ 1

−1
dx̄ KX

η′
N,x̄

(x − x̄)f (x̄) (17)

(X = J,L) with broadening kernels and widths given by

KJ
η′(x) = e−x2/(2(η′2)

√
2πη′ , η′

N,x̄ =
√

1 − x̄2
π

N
, (18a)

KL
η′ (x) = η′/π

x2 + η′2 , η′
N,x̄ =

√
1 − x̄2

4

N
, (18b)

respectively. Thus, fN (x) resolves the shape of f (x) with a
resolution of O(1/N).

For purposes of illustration, Fig. 3(a) shows three Cheby-
shev reconstructions of a δ function at x̄ = 0: without damping,
giving Gibbs oscillations; with Jackson damping, yielding a

 0
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fJ N
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FIG. 3. (Color online) Three Chebyshev reconstructions of δ(x),
with N = 50: The undamped case (gn = 1) yields Gibbs oscillations
[central peak has height δ50(0) = 16.23]; Jackson damping (δJ )
mimics a Gaussian peak KJ (x) of width π/N ; Lorentz damping
(δL) for λ = 4 mimics a Lorentzian peak KL(x) of width λ/N . Inset:
Jackson and Lorentz damping factors gJ

n and gL
n,λ=4, respectively,

plotted for N = 50. Both decrease monotonically from 1 to 0, but
in somewhat different ways. (b) Jackson-damped reconstruction
of a comb of normalized Gaussians (dashed line), all of width
η̄′ = 0.02, for three values of N (solid lines). The x dependence of
the peak heights is given by [2π (η̄′2 + η′2

N,x)]−1/2 (dashed-dotted line)
[see Eq. (19)].

near-Gaussian peak; and with Lorentz damping, yielding a
near-Lorentzian peak. Figure 3(b) shows a Jackson-damped
Chebyshev reconstruction of a comb of Gaussian peaks∑

α KJ
η̄′

α
(x − x̄α), the widths η̄′

α of which are all equal. It
illustrates how increasing N reduces the amount of broadening
until the original peak form is recovered for sufficiently large
N . It also shows that the broadened peak widths depend on the
peak positions, reflecting the fact that convolving a Gaussian
of width η̄′

α with a near Gaussian of width η′
N,x̄α

[Eq. (17)]
produces a near Gaussian of width

η′
α 


√
η̄′2

α + η′2
N,x̄α

. (19)

To evaluate the Tn(x) that occur in Eq. (13), we use the
first equality of Eq. (10). Although numerically more efficient
methods exist for this purpose,5 their use becomes advisable
only for expansion orders much larger than the N � O(103)
that we will need in this work.
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B. Rescaling of ω and Ĥ

To construct a Chebyshev expansion of the spectral function
ABC(ω) of Eq. (1), we need to rescale and shift5 the
Hamiltonian Ĥ → Ĥ ′ and the frequency ω → ω′ in such a
way that the spectral range of A(ω), i.e., the interval [0,WA]
within which it has nonzero weight, is mapped into the interval
[−1,1]. Rescaled, dimensionless energies and frequencies will
always carry primes. As safeguards against “leakage” beyond
[−1,1] due to numerical inaccuracies, we choose the linear
map (see Fig. 1)

ω ∈ [0,W∗] → ω′ ∈ [−W ′,W ′], W ′ = 1 − 1
2εt, (20)

which entails two precautionary measures. First, the ω interval
is taken to be larger than the requisite [0,WA] by choosing the
effective bandwidth W∗ to be larger than the spectral width WA;
second, the ω′ interval is taken to be slightly smaller than the
requisite [−1,1] by choosing the rescaled half-bandwidth W ′
to be smaller than 1, with a safety factor5 of εt 
 0.025. To be
explicit, we define

ω′ = ω

a
− W ′, a = W∗

2W ′ , (21a)

Ĥ ′ = Ĥ − E0

a
− W ′, (21b)

where Ĥ ′ has ground-state energy E′
0 = −W ′. Then, we

express the spectral function (1) as

ABC(ω) = 1

a
〈0|B̂ δ(ω′ − Ĥ ′) Ĉ|0〉 (22)

[with ω′ = ω′(ω) and Ĥ ′ given by Eqs. (21)], which by
construction has no weight for ω′ /∈ [−W ′,W ′].

One possible choice for W∗ is to equate it to the width of
the many-body spectrum of H , given by W = Emax − E0.
When using DMRG, E0 is usually already known from
calculating the ground state |0〉 of H , and Emax can be found,
e. g. , by calculating29 the ground state of −H (reduced
DMRG accuracy relative to usual ground-state calculations
is sufficient, since only Emax is of interest here.)

A disadvantage of the choice W∗ = W is that the many-body
bandwidth W typically is large (it scales with system size),
whereas optimal spectral resolution requires W∗ to be as small
as possible: since an N th order Chebyshev expansion yields a
resolution of O(1/N) on the interval [−1,1], its resolution on
the original interval [0,W∗] will be O(W∗/N ), which evidently
becomes better the smaller W∗. If B̂ and Ĉ are single-particle
operators, the spectral width WA of ABC(ω) is independent
of system size and, hence, much smaller than the many-body
bandwidth W . In this case, it is advisable to choose W∗ to be
of similar order (though still larger) than WA. We will choose
W∗ = 2WA, which is typically � W , as illustrated in 1.

C. Chebyshev expansion in frequency domain

To expand the δ function in Eq. (22) in Chebyshev
polynomials, we use f̂ (x) = δ(x − Ĥ ′) with x = ω′ in

Eq. (12), and obtain from Eq. (13) a reconstructed Chebyshev
operator expansion of the form

δN (ω′ − Ĥ ′) = 1

π
√

1 − ω′2

[
g0 + 2

N−1∑
n=1

gnTn(Ĥ ′)Tn(ω′)

]
.

(23)

Inserting this into Eq. (22) for ABC(ω) yields the Chebyshev
expansion (5), with Chebyshev moments given by

μn = 〈0|B̂Tn(Ĥ ′)Ĉ|0〉. (24)

Thus, μn is a ground-state expectation value of an nth-
order polynomial in Ĥ ′, the construction of which might
a priori appear to become increasingly daunting as n increases.
Fortunately, this challenge can be dealt with recursively by
expressing the moments as

μn = 〈0|B̂|tn〉, |tn〉 = Tn(Ĥ ′)Ĉ|0〉, (25)

and calculating the Chebyshev vectors |tn〉 by exploiting
the Chebyshev recurrence relations (8). The details of this
recursive scheme will be discussed in Sec. III.

D. Chebyshev expansion in time domain

The Chebyshev expansion can also be employed for
studying time evolution in general, and the correlator GBC(t) in
particular. To this end, we express the time-evolution operator
as

Û (t) = e−iĤ t =
∫ 1

−1
dω′e−i[a(ω′+W ′)+E0]t δ(ω′ − Ĥ ′) (26)

and insert Eq. (23) (without damping, gn = 1) into the latter.
This yields30,31

ÛN (t) = e−i(E0+aW ′)t

[
c0(t) + 2

N−1∑
n=1

Tn(Ĥ ′)cn(t)

]
, (27a)

cn(t) =
∫ 1

−1

e−iatω′
Tn(ω′)

π
√

1 − ω′2 dω′ = (−i)nJn(at). (27b)

Here, Jn(at) is the Bessel function of the first kind of order n. It
decays very rapidly with n once n > at . Hence, an expansion
of given order N gives an essentially exact representation of
Û (t) for times up to tmax � N

a
, while cN−1(t) provides an

estimate of the error.
By inserting Eqs. (27) into Eqs. (4) for GBC(t), we find

GBC
N (t) = e−iaW ′t

[
μ0J0(at) + 2

N−1∑
n=1

(−i)nμn Jn(at)

]
, (28)

where the Chebyshev moments μn are again given by Eq. (25).
Thus, the Chebyshev expansions of GBC(t) and ABC(ω) are
governed by the same set of moments μn, as is to be expected
for functions linked by Fourier transformation.

III. MPS EVALUATION OF THE CHEBYSHEV
MOMENTS μn

We now present a recursive scheme for calculating the
Chebyshev moments μn. The manipulations described below
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were implemented using MPS-based methods,4,6–10 which are
very convenient for constructing the states of interest, while
matrix product operators10 (MPOs) simplify the implementa-
tion of the shift and rescaling transformation [Eq. (21b)] of the
Hamiltonian.

A. Recurrence fitting

To initialize the Chebyshev expansion, we calculate ground
state |0〉 and ground-state energy E0 of Ĥ , make a specific
choice for W∗ and W ′, and construct Ĥ ′ according to Eq. (21b).
Then comes the main task, namely, the recursive calculation
of the moments μn. This is done by starting from

|t0〉 = Ĉ|0〉, |t1〉 = Ĥ ′|t0〉 (29)

and using the recurrence relation [obtained from Eq. (8)]

|tn〉 = 2Ĥ ′|tn−1〉 − |tn−2〉, (30)

which can be implemented using the so-called compression or
fitting procedure32 (see Ref. 4, Sec. 4.5.2 for details). It finds
an MPS representation for |tn〉, at minimal loss of information
for given MPS dimension m, by variationally minimizing the
fitting error

	fit = ‖|tn〉 − (2Ĥ ′|tn−1〉 − |tn−2〉)‖2. (31)

We will call this procedure recurrence fitting. In practice, the
variational minimization proceeds via a sequence of fitting
sweeps back and forth along the chain. These are continued
until the state being optimized becomes stationary, in the sense
that the overlap

	c =
∣∣∣∣1 − 〈tn |t ′n〉

‖|tn〉‖ ‖|t ′n〉‖
∣∣∣∣ (32)

between the states |tn〉 and |t ′n〉 before and after one fitting
sweep drops below a specified fitting convergence threshold
(typically in the range 10−6 to 10−8). The maximum expansion
order for which |tn〉 is obtained using recurrence fitting will be
denoted by Nmax.

The MPS dimension m needed to achieve accurate recur-
rence fitting turns out to be surprisingly small (see Sec. V
for a detailed analysis). For example, m = 32 sufficed for
the antiferromagnetic Heisenberg chain of length L = 100,

discussed in Sec. IV. The reason for this remarkable and
eminently useful feature lies in the fact that the Chebyshev
recurrence relations (30) contain only two terms on the
right-hand side, the addition of which requires only modest
computational effort. In contrast, CV or tDMRG typically
require much larger m since they attempt to represent the sum
of many states [see Eq. (6)] in terms of a single MPS.

For the special but common case that B̂ = Ĉ†, Eq. (9) yields
a relation between different moments

μn+n′ = 2〈tn |tn′ 〉 − μn−n′ . (33)

This can be used to effectively double the order of the expan-
sion to 2Nmax without calculating any additional Chebyshev
vectors, by setting n′ = n − 1 or n:

μ̃2n−1 = 2〈tn |tn−1〉 − μ1,

μ̃2n = 2〈tn |tn〉 − μ0. (34)

We use tildes to distinguish μ̃n moments calculated in this
manner from the μn moments obtained via Eq. (25). Although
they should nominally be identical, in numerical practice,
μ̃n moments are less accurate [by up to a factor of 5 in
Fig. 9(c) below] since they depend on two Chebyshev vectors,
whereas μn moments depend on only one. Our Chebyshev
reconstructions thus generally employ the μn moments and,
unless stated otherwise, μ̃n moments are used only for results
requiring Nmax � n < 2Nmax.

B. Energy truncation

We have argued above that, in order to optimize spectral
resolution, it may be desirable to choose the effective band-
width W∗ to be smaller than the full many-body bandwidth W .
If this is done, however, it is essential to include an additional
energy truncation step into the recursion procedure to ensure
that each |tn〉 remains free from “high-energy” components,
i.e., Ĥ ′ eigenstates with eigenenergies E′

k > 1, which fall
outside the range [−1,1] that is admissable for arguments of
Chebyshev polynomials. If W∗ < W , numerical noise causes
the state |tn〉 to contain such high-energy contributions in spite
of the precautionary measures described after Eq. (20) because
the application of Ĥ ′ to |tn−1〉 in Eq. (30) entails a DMRG
truncation step, which is not performed in the eigenbasis of
Ĥ ′. If such high-energy components were fed into subsequent
recursion steps, the norms ‖tn〉‖ of successive Chebyshev
vectors would diverge rapidly (as would the resulting moments
μn) because this effectively amounts to evaluating Chebyshev
polynomials Tn(x) for |x| > 1, where |Tn| � 1 [see Fig. 2(b)].

As a consequence, after obtaining a new state |tn〉 from
Eq. (30), we take the precautionary measure of projecting
out any high-energy components that it might contain before
proceeding to the next |tn+1〉. This can be done by performing
several energy truncation sweeps. During an energy truncation
sweep, we focus on one site at a time, perform an energy
truncation in a local Krylov basis constructed for that site,
and then move on to the next site. Shifting the current site is
accomplished by standard MPS means, without any truncation,
as a DMRG truncation would counteract the energy truncation.
(As a consequence, an energy truncation in terms of two-site
sweeps has not been implemented.)

The truncation must take place in the energy eigenbasis
of the Hamiltonian Ĥ ′. Of course, its complete eigenbasis
is not accessible, thus, we build a Krylov subspace of
dimension dK within the effective Hilbert space at every
site. Alternatively, energy truncation can also be performed
in the bond representation |ψ〉 = Blr |lk〉|rk〉. In this Krylov
subspace, the effective Hamiltonian Ĥ ′

K of dimension dK can
be fully diagonalized and so we can construct a projection
operator to project out all eigenstates with energy bigger
than some energy truncation threshold εP . The choice of this
threshold depends on the choice of W∗. We have found the
combination W∗ = 2WA and εP = 1.0 to work well (but other
choices, involving, e.g., smaller W∗ and larger εP would be
possible, too.)

In the following, we describe the procedure just outlined in
more detail for a single site using standard MPS nomenclature.
Let the effective local Hilbert space for this site be spanned
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TABLE I. List of CheMPS parameters that control various algorithmic tasks, influencing their numerical costs and the quality of results.
Since the tasks “recurrence fitting” and “energy truncation” are carried out at every recursion step, the importance of the corresponding
parameters is self-evident. However, W∗ and εt, which determine the rescaled Hamiltonian Ĥ ′, turn out to have a high impact on the results, too,
as the quality of the energy truncation sweeps strongly depends on Ĥ ′. For εP = 1, the choice of taking W∗ to be twice the spectral bandwidth
WA (or equal to the many-body bandwidth W ) was found to work well with (or without) energy truncation, respectively. N and gn do not affect
the calculated moments of the expansion, but control the broadening of the reconstructed spectral function.

Parameter Recommended value Description Task

W∗ 2WA (or W ) Effective bandwidth with (or without) energy truncation Rescaling of H

εt 0.025 Safety offset in rescaled half-bandwidth: W ′ = 1 − 1
2 εt

m MPS dimension Recurrence fitting

	c 10−6, . . . ,10−8 Fitting convergence threshold

dK 30 Krylov subspace dimension Energy truncation
nS 10 Number of sweeps

εP 1.0 Energy truncation threshold (in rescaled units)

N Depends on system size Order of expansion, broadening Spectral reconstruction
gn gJ

n Choice of damping factors

by the left, local, and right basis vectors |l〉, |σ 〉, and |r〉, and
expand the Chebyshev vector |ψ〉 = |tn〉 in this basis:

|ψ〉 =
∑
lσ r

A
[σ ]
lr |l〉|σ 〉|r〉. (35)

To construct a projection operator P that projects out the
high-energy components for this site |ψ〉 → P |ψ〉, one may
proceed as follows.

First, build a Krylov subspace of dimension dK within
span{|l〉|σ 〉|r〉} and calculate the matrix elements of Ĥ ′ within
it (no truncation necessary):

|ĩ〉 = (Ĥ ′)i−1|ψ〉, i = 1, . . . ,dK (36a)

|ĩ〉 → |i〉 orthonormalize via Gram-Schmidt, (36b)

(Ĥ ′
K )ij = 〈i|Ĥ ′

K |j 〉, Ĥ ′
K ∈ CdK×dK . (36c)

Next, fully diagonalize Ĥ ′
K to obtain all eigenenergies ε′

α

and eigenvectors |eα〉:

Û †Ĥ ′
KÛ =

dK∑
α=1

|eα〉ε′
α〈eα|. (37)

Then, construct the projection operator

P = 11 −
∑

α:ε′
α�εP

|eα〉〈eα| (38)

for a certain energy threshold εP and apply it:

|ψ〉 → P |ψ〉. (39)

Performing this procedure once for every site of the chain
constitutes a truncation sweep. The state obtained after several
truncation sweeps, say |tn〉tr, is stripped from the unwanted
high-energy components of |tn〉, as well as possible within a
Krylov approximation. After fitting and truncation have been
completed, the resulting (unnormalized) state |tn〉tr is renamed
|tn〉, used for calculating μn, and fed into the next recursion
step.

To quantify the effects of energy truncation, we consider
two measures of how much |tn〉 changes during truncation.
First, for a given truncation sweep, we define the average
truncated weight per site (averaged over all sites) by

N
sweep
tr =

√√√√ 1

L

∑
k

∑
α:ε′

α�εP

∣∣〈ek
α

∣∣ψ 〉∣∣2
, (40)

where |ek
α〉 are the vectors constituting the projector of

Eq. (38) at site k. Second, we define the truncation-induced
state change by

	tr = ‖|tn〉tr − |tn〉‖2 . (41)

It measures changes in the state due to the intended truncation
of high-energy weight, but also due to unavoidable numerical
errors. In our experience, neither of the truncation measures
N

sweep
tr and 	tr show clear signs of decay when increasing the

number of truncation sweeps, say nS [see Fig. 10(c) below].
This reflects the fact that energy truncation has the status
of a precautionary measure, not a variational procedure, and
implies that there is no dynamic criterion as to when to stop
truncation sweeping. As a consequence, one has to analyze
how the accuracy of the results depends on nS and optimize
the latter accordingly. This will be described in Sec. V B below.

The numerical costs for energy truncation are as follows:
The cost for the steps in Eqs. (36) are O(d2

Km3d2DH ), where
m is the MPS dimension, d is the size of the local site basis,
and DH is the matrix product operator dimension of Ĥ ′. The
diagonalization of Ĥ ′K is of O(d3

K ), where dK is theoretically
bounded by m2d. In our experience, the purpose of the
energy truncation, which is solely to eliminate high-energy
contributions, is well accomplished already for a relatively
small Krylov subspace dimension of dK = 30 � m2d.

An overview of all the parameters relevant for CheMPS
is given in Table I. Where applicable, it also lists the values
that we found to be optimal. A detailed error analysis, tracing
the effects of various choices for these parameters, will be
presented in Sec. V.
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IV. RESULTS: HEISENBERG ANTIFERROMAGNET

To illustrate the capabilities and power of the proposed
CheMPS approach, this section presents results for the spin
structure factor of a one-dimensional spin- 1

2 Heisenberg
antiferromagnet (HAFM) and compares them against results
obtained from CV and tDMRG approaches.

A. Spin structure factor

We study the spin- 1
2 HAFM for a lattice of length L:

ĤHAFM = J

L−1∑
j=1

Ŝj · Ŝj+1, (42)

where Ŝj denotes the spin operator at site j . We choose
J = 1 as unit of energy throughout this section. This model
exhibits SU(2) symmetry, which has been exploited33 in
our calculations; accordingly, all MPS dimensions noted for
the HAFM are to be understood as the number of SU(2)
(representative) states being kept. To account for the open
boundary conditions, we define spin-wave operators as

Ŝk =
√

2

L + 1

L∑
j=1

sin(jk)Ŝj (43)

with quasimomentum k = lπ/(L + 1), l = 1, . . . ,L. [When
displaying numerical results for “k = π” or π/2 below, we
mean k = πL/(L + 1) or π (L/2 + 1)/(L + 1), respectively,
choosing L even throughout.] The spin structure factor
(spectral function) we are interested in is given by

S(k,ω) = AS†
k ·Sk (ω). (44)

It is known from exact solutions34–38 that the dominant part of
the spin structure factor stems from two-spinon contributions,
bounded from below and above by

ω1 = π

2
|sin k| and ω2 = π

∣∣∣∣sin
k

2

∣∣∣∣ . (45)

(For the exact solution of an infinite system, k refers to the true
momentum, not quasimomentum.) Moreover, for an infinite
system, S(k,ω) is known37,38 to diverge as

S(k,ω) ∼ [ω − ω1]−
1
2

√
ln[1/(ω − ω1)] for k �= π, (46a)

S(π,ω) ∼ ω−1
√

ln(1/ω) (46b)

as ω approaches the lower threshold ω1 from above. This
divergence reflects the tendency toward staggered spin order
of the ground state of the Heisenberg antiferromagnet. It
poses a severe challenge for numerics, which always deals
with systems of finite size, and hence will never yield a
true divergence. Instead, the divergence will be cut off at
ω − ω1 
 1/L, yielding a peak of finite height

max S(k,ω) ∼ [L ln L]
1
2 for k �= π, (47a)

max S(π,ω) ∼ L[ln L]
1
2 . (47b)

Thus, the best that one can hope to achieve with numerics
is to capture the nature of the divergence as ω approaches ω1

before it is cut off by finite size, or the scaling of the peak
height with system size.

Equation (45) gives a good guide for choosing W∗. We
found the choices W∗ = 6.3 
 2π and εt = 0.025 to work well
for all k and have used them for all figures (4 to 6) of this
section. As consistency checks, we verified that the resulting
S(k,ω) is essentially independent of W∗ and that it agrees
with a calculation that included the full many-body bandwidth
(W∗ = W ).

To have an accurate starting point for all calculations, we
used throughout a ground state obtained by standard DMRG
with MPS dimension m = 512. From expansion order n = 1
onward, it turned out to be sufficient to represent all Chebyshev
vectors |tn〉 using a surprisingly small MPS dimension of m =
32, or m = 64 for some results involving very large iteration
number, as indicated in every figure. (In retrospect, this implies
that, for the ground state too, a much smaller m would have
sufficed.) We have verified that the structure factor S(k,ω) is
well converged w.r.t. m nevertheless. Detailed evidence for
this claim will be presented below. However, already at this
stage it is worth remarking that the ability of CheMPS to get
good results with comparatively small m values is perhaps
the single most striking conclusion of our work. This will be
discussed in detail below.

B. Comparison to CV

We begin our discussion of CheMPS results by comparing
them to those of CV calculations, which are known to be
very accurate, although also computationally expensive. The
CV method involves a broadening parameter η and broadens
δ functions into Lorentzian peaks of width η. This can be
mimicked with CheMPS by using Lorentz damping (with λ =
4.0) since this also produces Lorentzian broadening, represent-
ing a δ function δ(ω′ − ω̄′) by a near-Lorentzian peak, albeit
with a frequency-dependent width η′

N,ω̄′ = √
1 − ω̄′2 λ/N (see

Sec. II A and 3). To compare CheMPS results with CV results
at given η, we thus identify η = aη′

N,ω̄′ , where a is the scaling
factor from Eqs. (21) and ω̄′ is taken to be the rescaled and
shifted version of the frequency ωmax at which the peak reaches
its maximum. Thus, we set the expansion order used for
reconstruction to

N = 4a

η

√
1 − (ωmax/a − W ′)2. (48)

Figure 4 shows such a comparison for the structure factor
S(π/2,ω) of a L = 100 Heisenberg chain. We used two
choices of η that are large enough to avoid finite-size effects,
namely, η = 0.1 and 0.05, and set ωmax = π/2 [cf. ω1 of
Eq. (45)]. We used MPS dimensions of mCV = 1000 or
mCh = 32 for CV or CheMPS calculations, respectively. (Our
choice for mCV aimed for achieving highly accurate CV results;
for η = 0.05, this required mCV = 1000, but for η = 0.1,
a slightly smaller value for mCV would have sufficed.) We
find excellent agreement between the two approaches without
adjusting any free parameter since N is fixed by (48). For
example, for η = 0.05, N = 255, the relative error is less than
3% for all ω.

Since this level of agreement is obtained using mCh � mCV,
we conclude that CheMPS with Lorentz damping gives results,
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FIG. 4. (Color online) Comparison of CheMPS vs correction-
vector (CV) calculations of S(k = π/2,ω) for a Heisenberg chain:
Lines show Chebyshev results reconstructed for N = 118 and 236
using Lorentz damping [(16)] with λ = 4.0; symbols show CV
results, obtained using broadening parameters of η = 0.1 and 0.05.
We expect and indeed find good agreement between lines and
symbols since both Lorentz damping and the correction-vector
method, in effect, broaden the spectral function by Lorentzians, the
widths of which we equated by choosing aλ/N = η (with a = 3.19)
[see Eq. (48) and also Fig. 3]. Since mCh � mCV, the numerical cost
of obtaining an entire curve via Chebyshev is dramatically cheaper
than calculating a single point via CV, as discussed in the text.

the accuracy of which is comparable to those of CV, at
dramatically reduced numerical cost. Indeed, for η = 0.05,
the calculation of the entire CheMPS spectral function was 25
times faster than that of a single CV data point and took up
21 hours on a 2.6-GHz single-core Opteron CPU.

C. Finite-size effects

Let us now analyze the role of finite system size. To this
end, it is, of course, important to understand broadening effects
in detail. The fact that CheMPS offers simple and systematic
control of broadening via the choice of the expansion order
(and damping factors), as will be illustrated below, is very
convenient and may be regarded as one of its main advantages.

Figure 5(a) shows CheMPS results for the spin structure
factors S(k,ω) of four different momenta k, calculated for
L = 100 using Jackson damping. They were reconstructed
using the largest expansion order, say NL, that does not
yet resolve finite-size effects, a choice that will be called
optimal broadening. Each curve shows a dominant peak, and
we are interested in finding its intrinsic shape S∞(k,ω) in
the continuum limit of an infinitely long chain (L → ∞).
Thus, the following general question arises: Under which
conditions will a spectrum calculated for finite system size L

and reconstructed with finite expansion order N , say, SL
N (ω),

correctly reproduce the desired continuum spectrum S∞(ω)?
The general answer, of course, is that the optimally broadened
spectrum should have converged as a function of L, i.e.,
the shape of SL

NL
(ω) should not change upon increasing L.

However, for a spectrum with an intrinsic divergence, such as
Eq. (46), the peak’s height will never saturate with L; at best,

one can hope to observe L convergence of the shape of its tail
and the proper scaling of its height Eq. (47).

To illustrate the nature of finite-size effects and the role of
N in revealing or hiding them, Fig. 5(b) shows S(π,ω) for
L = 100 and several values of N , both smaller and larger
than NL. As N is increased and the effective broadening
ηN 
 O(W∗/N ) decreases, the main peak of the initially very
broad and smooth spectral function becomes sharper. Optimal
broadening in Fig. 5(b) corresponds to NL 
 70, beyond which
additional “wiggles” emerge. These develop, with beautifully
uniform resolution, into dominant subpeaks as N is increased
further. The discrete subpeaks reflect the quantized energies of
spin-wave excitations in a finite system. With sufficiently high
resolution [N = 999 in Fig. 5(b)], numerous additional minor
subpeaks emerge, but their weight is very small compared to
that of the dominant subpeaks. This fact is important since
it implies that the structure factor of a finite-size system is
exhausted almost fully by the set of dominant subpeaks, with
very small intrinsic widths.

We have checked that there are O(L) dominant subpeaks
within the spectral bandwidth of S(k,ω). Correspondingly, the
average spacing between dominant subpeaks, to be called the
finite-size energy scale ωL, is proportional to 1

L
[Figs. 5(c)

and 5(d)]. The weight of each subpeak decreases similarly,
ensuring that the total weight in a given frequency interval
converges as L → ∞. The inverse subpeak spacing h̄/ωL

corresponds to the Heisenberg time, i.e., the time within which
a spin-wave packet propagates the length of the system.

Figures 5(e) and 5(f) illustrate two slightly different
broadening strategies. In Fig. 5(e), L is increased for fixed
N : the distinct subpeaks increasingly overlap, resulting in a
smooth spectral function once ωL drops below ηN . In Fig. 5(f),
optimal broadening is used (ηN just larger than ωL: now, no
subpeaks are visible and the L evolution of the main peak is
revealed with better resolution).

In both Figs. 5(e) and 5(f), the peak height shows no
indications of converging with increasing L. [The same is true
for the data of Fig. 5(a).] This reflects the intrinsic divergence
of the peak height expected from Eq. (46). Figures 6(a) and 6(b)
contain a quantitative analysis of this divergence for S(π,ω)
and S(π/2,ω), respectively. The shape of the divergences
for an infinite system are shown by the thick solid lines,
representing exact Bethe ansatz results from Ref. 38. Thin
dashed lines show results from tDMRG from Ref. 22 for
L = 100, and thin solid lines show CheMPS results for several
system sizes between L = 50 and 300. For CheMPS spectral
reconstruction, we determined the expansion order N300 that
ensures optimal broadening for L = 300, and used a fixed ratio
of N/L = N300/300 for all curves [namely, 0.42 or 0.67 for
Figs. 4(a) and 4(b), respectively]. CheMPS (for L = 300) and
tDMRG reproduce the peak’s tail and flank well, but clearly
and expectedly are unable to produce a true divergence at the
lower threshold frequency. Nevertheless, the insets show that
the manner in which the CheMPS peak heights increase with
L is indeed consistent with Eq. (46). {For the limited range of
available system sizes, however, a reliable distinction between
L[ln(L)]1/2, [L ln(L)]1/2, or L behavior is not possible.}

It is also possible to determine the lower threshold fre-
quency ω1 rather accurately from the CheMPS results by doing
an 1/L extrapolation. We illustrate this in 6(b) by extrapolating
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FIG. 5. (Color online) Spin structure factors for a Heisenberg chain, reconstructed using Jackson damping. (a) S(k,ω) for four choices of
momentum k, for a chain of length L = 100. Each spectrum was reconstructed using optimal broadening, i.e., by choosing the largest expansion
order, say, NL (indicated by superscripts), that does not yet resolve finite-size effects. (b)–(f) Finite-size analysis of S(π,ω). (b) To determine
NL for given L (here 100), several different expansion orders N are considered. Increasing N reduces the effective broadening ηN 
 O(W∗/N )
until finite-size subpeaks appear for N > NL (here, NL = 70, bold red curve). (c) Evolution of the finite-size structure with L, revealed by
fixing N large enough (here = 499) to resolve the first few dominant subpeaks of all curves. There are L dominant subpeaks (not all shown
here) within the spectral bandwidth, with average spacing ωL ∼ 1/L. (d) Same as (c), but plotted on a semilog scale, and with somewhat
smaller N (here = 180), chosen to be somewhat larger than the optimal broadening NL for the largest L (here N300 = 125). As L increases and
ωL decreases, the subpeaks coalesce toward the intrinsic lineshape S∞(k,ω). (e) When L is increased at fixed N (here 70), finite-size effects
disappear once ωL drops below the effective broadening ηN , resulting in a smooth spectral function. (f) In contrast, when L is increased while
using optimal broadening, N = NL (i.e., ηN just above ωL), none of the curves show finite-size effects, and the resulting main peak is sharper
than in (e). In both (e) and (f), the peak height shows no indications of converging with L, reflecting the fact that the true peak shape involves an
ω−1[ln ω]−1/2 divergence. Moreover, the CheMPS curves in (f) show signs of overbroadening when compared to the exact Bethe ansatz result
(dashed lines) from Ref. 38.

the frequencies at which S(π/2,ω) = 0.1 (triangles). Since the
data exhibit a slight curvature when plotted against 1/L [see
lower inset of 6(b)], they were fitted using a second-order
polynomial in 1/L. Extrapolating the fit to 1/L = 0 yields
ω1 = 0.496π (marked by a square), in good agreement with
the prediction ω1 = π/2 from Eq. (45).

D. Discrete representation of spectral function

In both Figs. 5(f) and 6, the right flank of the peak still bears
signatures of overbroadening: the curve for a given L lies above
those for larger L (before bending over toward its peak), and
all curves lie significantly above the exact Bethe ansatz curve
(dashed line). One way of reducing this broadening would be
to simply increase L, but this is numerically costly. Clearly,
alternative strategies for reducing finite-size effects would be
desirable. One such scheme, involving linear prediction in the
time domain, will be discussed in the next subsection. Here, we
present another scheme, which exploits the ability of CheMPS
to accurately resolve finite-size peaks.

The origin of overbroadening is clear: When neighboring
subpeaks are broadened enough to overlap, weight is inevitably
transferred from large peaks to smaller peaks. This effect
is negligible only in the limit L → ∞, where the subpeak
spacing becomes negligible. To avoid overbroadening for a
finite-L system, one thus has to analyze spectra for which N is
large enough that subpeaks do not overlap significantly, such
as that shown in Fig. 5(b).

To be concrete, let us represent the true, discrete spectrum
of a system of size L by a sum of peaks, enumerated by a
counting index α, with position α , width η̄α , weight Wα , and
Gaussian shape KJ [cf. Eq. (18a)]:

SL(k,ω) 

∑

α

WαKJ
η̄α

(ω − α). (49)

Its Chebyshev reconstruction with Jackson damping, say,
SL

N (k,ω), will have the same form, except that the peaks will
be broadened to have widths ηα = (η̄2

α + η2
N,α)1/2 as explained

before Eq. (19). If N is large enough, the broadened peaks will
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FIG. 6. (Color online) Comparison of CheMPS, Bethe ansatz,
and tDMRG + prediction for HAFM structure factors with (a) k = π

and (b) k = π/2. Dashed lines: Bethe ansatz results for L = ∞,
from Ref. 38. Dashed-dotted lines: tDMRG results, from Ref. 22.
Other lines show CheMPS results for L = 50, 100, 200, and 300,
reconstructed using a fixed ratio of N/L, namely, 0.42 for (a) and 0.67
for (b). Circles mark Chebyshev peak maxima, also for L = 66, 150,
and 250, for which no curves are shown. The lower inset in (a) zooms
into the peak region using a linear scale, illustrating overbroadening.
The upper insets of (a) and (b) show the peak heights vs L (circles),
together with a fit to the Bethe ansatz expectation from Eq. (46)
(dashed line) or to a straight line (solid line). In (b), triangles mark
the lower threshold frequencies for which S(π/2,ω) equals a fixed,
small value, arbitrarily chosen as 0.1. Their 1/L → 0 extrapolation,
shown in the lower inset, gives an estimate for the lower threshold
frequency, namely, ω1/π = 0.496 (marked by a square); the exact
value is 1/2.

still be clearly separated (as for N = 999 or 250 in Fig. 5). By
fitting each peak (separately, one by one) to a Gaussian, one
can determine its position α , weight Wα , and effective width
ηα and deduce the intrinsic width via η̄α = (η2

α − η2
N,α)1/2.

We find (not shown) that the intrinsic width grows with
increasing frequency α . This implies, not unexpectedly,
that higher-lying spin-wave excitations have shorter lifetimes.
However, it also implies that higher-lying peaks eventually
start to overlap, so that the analysis to be described below is
feasible only for a limited number of low-lying peaks.

The discrete peaks suggest a natural partitioning of the
frequency spectrum into intervals Iα: Each contains one peak
of weight Wα at position α , extends halfway to the next peaks
at α±1 on either side, and has width 	α = (α+1 − α−1)/2.
The first interval above the lower spectral threshold (ω1) is
defined slightly differently: I1 has lower bound ω1 and width
	1 = (1 + 2)/2 − ω1.

Now, to produce a smooth curve devoid of finite-size effects,
the subpeaks must be broadened until they overlap substan-
tially. However, if the weights in two neighboring intervals
differ, say, Wα > Wα+1, such broadening inevitably transfers
weight from interval Iα to Iα+1, resulting in overbroadening.

Such overbroadening can be avoided by constructing a
discrete representation of the spectral function Sdis(k,α),
defined by the set of coordinates

{(α,Sα)} with Sα = Sdis(k,α) = Wα/	α. (50)

The identification of Sα with Wα/	α follows from applying
the definition of a spectral function, namely, spectral weight
per unit frequency interval, to the interval Iα .

Figure 7 shows the resulting discrete data points for
four different system sizes. Remarkably, they all fall onto
the same curve, which agrees well with the Bethe ansatz
result (dashed line). In particular, the first two or three data
points for each L lie right on top of the Bethe ansatz curve
[(dashed line), see Fig. 7, left inset], beautifully mapping
out the true shape of the spectral function down to the
lowest discrete excitation frequency α that exists for that
L. Evidently, the discrete spectral function is completely free
from broadening artifacts, in marked contrast to the optimally
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FIG. 7. (Color online) Discrete representation [Eq. (50)] of the
structure factor Sα = Sdis(π,α) (symbols) for five different system
sizes. (The lower panel uses an enlarged vertical scale to zoom in on
the tail region.) For comparison, the Bethe ansatz result (dashed line)
and two optimally broadened spectra, for L = 400 and 200 (solid
lines), are also shown. Left inset: Zoom to low frequencies, showing
that the discrete data completely avoid overbroadening, in contrast
to the optimally broadened spectra. Right inset: The log-log version
of main plot. The frequency range does not extend low enough to be
able to uncover the pure asymptotic predicted by Eq. (46b).
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broadened curves shown for L = 200 and 400 (solid lines)
[compare also Fig. 5(f)]. This advantage comes at the price of
specifying the spectral function only at discrete points, not via
a continuous curve. However, for a system of finite size, such
discreteness is fundamentally unavoidable. The good news is
that the continuum curve S∞

N (k,ω) is evidently well mimicked
by the discrete representation {(α,Sα)}, and that CheMPS
allows the latter to be determined in a straightforward fashion
for system sizes well beyond what can be done with exact
diagonalization. We are not aware of any other numerical
many-body method capable of doing so for system sizes as
large as those considered here.

For larger frequencies, the scatter of the discrete data w.r.t.
the Bethe ansatz curve increases, reflecting the fact that sub-
peaks begin to overlap there, making the extraction of discrete
data increasingly difficult. However, this is not a serious
concern since, in this frequency regime, optimal broadening is
able to produce smooth spectra in good agreement with Bethe
ansatz anyway.

To conclude this subsection, let us summarize the two
main results of our finite-size analysis. The first concerns
physics: For a chain of finite chain of L sites, the structure
factor is dominated by a set of O(L) sharp subpeaks, the
spacing and weight of which scale as 1/L. The second
concerns methodology: CheMPS very conveniently allows
this structure to be revealed or hidden by simply choosing
N appropriately. Moreover, it can exploit information on the
positions and weights of the discrete subpeaks to largely
eliminate broadening artifacts.

E. Comparison of tCheMPS to tDMRG

Another possible scheme for reducing finite-size effects is
to work in the time domain using linear prediction, as shown
in Ref. 22 for the HAFM. The idea is to calculate the Fourier
transform of S(k,ω), namely,

S(k,t) =
L∑

x=1

eik(x−x ′)〈Ŝx(t)Ŝx ′ (0)〉, (51)

with x ′ chosen near the middle of the chain and t chosen small
enough that the spin excitation created at x ′ does not reach the
edge of the system within t . The function S(k,t) thus obtained
will contain only weak finite-size effects. It is then extrapolated
to larger times via linear prediction techniques,19–22 exploiting
the fact that momentum excitations typically exhibit damped
harmonic dynamics, the time dependence of which can be
extrapolated quite accurately. Since the extrapolated function
extends to very large times, its Fourier transform yields good
spectral resolution at low frequencies19 (with an accuracy that
depends on that achieved during linear prediction).

In Ref. 22, the input correlator needed for linear prediction,
S(k,t), was calculated using tDMRG. (Two examples of the
resulting spectra are included in our Fig. 6.) We note that
S(k,t) can also be calculated using CheMPS in the time
domain, to be called tCheMPS. Indeed, the numerical cost
for calculating S(k,t) by evaluating the requisite correlators
〈Ŝx(t)Ŝx ′ (0)〉 via Eq. (28) is essentially the same as calculating
its Fourier transform S(k,ω) via Eq. (23) since the correspond-
ing Chebyshev moments μn can be calculated using the same
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FIG. 8. (Color online) (a) Time dependence of S(π/2,t), cal-
culated with tCheMPS (lines) and tDMRG (symbols). Solid and
dashed lines show, respectively, the real and imaginary parts of S.
(b) The differences between tCheMPS and tDMRG (with a specified
truncation error of 10−6) of S(k,t) for two values of k and two values
of m (dashed/solid lines). To estimate the accuracy of tDMRG, we
also show (dashed-dotted lines) the differences between two tDMRG
calculations performed with different truncation error thresholds,
namely, 10−5 and 10−6, requiring up to m = 75 or 125 states,
respectively.

recursion scheme. In fact, if one defines Ŝk in Eq. (43) using a
pure exponential eikj instead of a sin function, the Chebyshev
moments needed for S(k,t) are simply linear combinations of
those of S(k,ω).

To gauge the accuracy of tCheMPS, we have calculated
S(π/2,t) using both tCheMPS and tDMRG. Figure 8(a)
compares the results, and 8(b) characterizes the differences.
We view the tDMRG results as benchmark because, for the
times of interest, we have checked them to be well converged
[with errors �10−3 for t < 50, see 8(b), dashed-dotted line].
As expected, the agreement between tCheMPS and tDMRG is
better for larger m. The differences are very small, but grow
with time, from being (for m = 64) below 10−3 for t � 10 to
around 10−2 for t 
 30, beyond which finite-size effects start
to appear.

More generally, the results of Fig. 8 illustrate that CheMPS
offers a viable route to time evolution for situations where
extreme accuracy is not required. Further comments on this
prospect are included in the outlook, Sec. VII.

V. ERROR ANALYSIS

The convergence properties of a Chebyshev expansion are
mathematically well controlled and understood [see Eq. (14)],
provided that the Chebyshev moments μn are known precisely.
Their evaluation via CheMPS, however, introduces various
sources of numerical errors. This section is devoted to an
analysis of these errors. In particular, we seek to determine
appropriate choices for the control parameters associated with
the various CheMPS tasks listed in Table I. We perform this
analysis mostly for a resonant level model (RLM), describing
three local levels coupled to a fermionic bath. This model
is introduced and discussed in the Appendix, which, for the
sake of completeness, also includes CheMPS expansions of
the corresponding spectral functions. However, the details
presented there are not needed for the following discussion.
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FIG. 9. (Color online) Comparison of CheMPS and ED results for Chebyshev moments of the RLM spectral function A−
11. (a), (b) show

μn and μ̃n moments [Eqs. (25) and (34)] and (c), (d) show the n-dependent error measures δED
n , δ̃ED

n , and δ̃Ch
n [Eqs. (52)], plotted in (a), (c) for

n < Nmax = 200 and in (b), (d) for Nmax � n < 2Nmax. In (b), the increase in moment magnitude starting around n 
 250 marks the onset of
resolving finite-size structure in the spectral function. (e), (f) show the cumulative error measures 	ED, 	̃ED, 	̃Ch [Eqs. (53)], and 	A [Eq.
(54)] for various combinations of the MPS dimension m, the number of energy truncation sweeps nS , and the Krylov subspace dimension dK .

For the RLM, on the one hand, the CheMPS evaluation
of the μn is feasible to arbitrarily high orders, and on the
other, exact diagonalization (to be denoted by subscript or
superscript ED) of the single-particle Hamiltonian allows both
the spectral function and the Chebyshev moments μn to be
found exactly. We use the RLM parameters specified in the
Appendix throughout and focus mainly on the properties of
one of its correlators A−

11 (without displaying corresponding
subscripts and superscripts), which is defined in Eq. (A2) and
the behavior of which is representative for that of A±

ij .

A. Definition of error measures

We will analyze both μn and μ̃n moments, calculated from
Eqs. (25) and (34), respectively. The differences between
CheMPS and ED can be quantified by the error measures

δED
n = ∣∣μCheMPS

n − μED
n

∣∣ , n < Nmax (52a)

δ̃ED
n = ∣∣μ̃CheMPS

n − μED
n

∣∣ , n < 2Nmax. (52b)

Moreover, to characterize the accuracy of CheMPS moments
without referring to exact results, we also consider

δ̃Ch
n = ∣∣μ̃CheMPS

n − μCheMPS
n

∣∣ , n < Nmax. (52c)

We will also use cumulative versions of these, namely,

	ED =
√√√√Nmax−1∑

n=0

(
δED
n

)2
, (53a)

	̃ED =
√√√√	ED2 +

2Nmax−1∑
n=Nmax

(
δ̃ED
n

)2
, (53b)

	̃Ch =
√√√√Nmax−1∑

n=0

(
δ̃Ch
n

)2
. (53c)

Furthermore, we also introduce an integrated error measure
for undamped spectral functions (using Jackson damping
would yield qualitatively similar error measures):

	A =
√∫ W∗

0
dω|A2Nmax (±ω) − A∞(±ω)|2. (54)

Here we use ± for A±(ω) spectra proportional to θ (±ω) [see
Eq. (A2)] and employ μn moments for n < Nmax and μ̃n mo-
ments for Nmax � n < 2Nmax during spectral reconstruction.
[Note that 	̃ED of Eq. (53b) was constructed to reflect this
combination of μn and μ̃n.]

B. Comparison of CheMPS and ED moments

Figure 9 contains the results of our comparison of CheMPS
and ED moments for a fixed set of CheMPS parameters, stated
in the figure legend. Figures 9(a) and 9(b) show Chebyshev
moments μn and μ̃n and Figs. 9(c) and 9(d) show the
n-dependent error measures δED

n , δ̃ED
n , and δ̃Ch

n . From Fig. 9(c),
we note several points: (i) For n � Nmax, the μn moments from
CheMPS and ED agree to within about 1%; this illustrates
that CheMPS is able to generate rather accurate results for
several hundred moments at modest computational costs.
(ii) μn moments are more accurate than μ̃n moments;
the reason is that each μn moment depends on only one
Chebyshev vector, whereas each μ̃n moment depends on two.
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FIG. 10. (Color online) (a) Relative fitting error 	r
fit = 	fit/ ‖|tn〉‖2 [Eq. (31)] and relative truncation-induced state change 	r

tr = 	tr/ ‖|tn〉‖2

[Eq. (41)], as functions of recursion number n, for three different choices of MPS dimension m. Both quantities decrease with increasing m,
but 	r

fit more strongly so since recurrence fitting is a strictly variational procedure, whereas energy truncation is not. (b) 	r
tr as function of n

and (c) the average truncated weight per site N
sweep
tr (for n = 20) as function of truncation sweep number k. Both (b) and (c) show results for

four choices of Krylov subspace dimension dK , the dK dependence of which saturates beyond dK = 30.

[Note, though, that if spectral reconstruction is performed by
employing both μn moments for n � Nmax and μ̃n moments
for n > Nmax (as done, e.g., for Figs. 5 and 13), the reduced
accuracy of the μ̃n moments is offset to some extent if damping
factors gn are employed since these decay to 0 as n approaches
N (see inset of Fig. 3).] (iii) The error measures δ̃Ch

n and δ̃ED
n

are of comparable magnitude; this implies that δ̃Ch
n is a useful

error quantifier if exact results are not available.
The way in which these errors depend on the various

CheMPS control parameters can conveniently be analyzed
using the cumulative error measures 	ED, 	̃ED, 	̃Ch, and
	A. These are shown in Figs. 9(e) and 9(f) for various
combinations of m, nS , and dK . Several more observations can
be made: (iv) When increasing the Krylov subspace dimension
dK , all cumulative errors decrease from dK = 20 to 30, but
the decrease saturates beyond dK = 30. (v) Increasing the
number of energy truncation sweeps beyond nS = 10 does not
necessarily reduce the cumulative errors; on the contrary, most
actually increase, implying that energy truncation sweeping
should not be overdone. (vi) The cumulative errors depend only
weakly on the MPS dimension m (except for dK = 10, which
is unreliable anyway) and tend to be smaller(!) for m = 32 than
64 [compare Figs. 9(e) and 9(f)]. This trend suggests that the
errors introduced by energy truncation grow if the mismatch
between m and dK grows. Points (iv) to (vi) indicate that energy
truncation is the limiting factor for reducing CheMPS errors,
a fact that will be elaborated on in Sec. V C below.

To identify an optimal combination of CheMPS control
parameters, we have collected error data such as those
shown in Figs. 9(e) and 9(f) for each possible combi-
nation of W∗ = (1.1,1.5,2.0), εt = (0.1,0.01,0.025), dK =
(10,20,30,50), nS = (5,10,20), and several m values for
fixed maximum recursion number Nmax = 50 and conver-
gence threshold 	c = 10−8. We concluded that the choices
dK = 30, nS = 10, W∗ = 2WA, and εt = 0.025 robustly yield
good results (also for the HAFM) and, hence, list these as
recommended values in Table I. Actually, the precise choice
of εt has only small effects on the error, as long as W∗ is chosen
big enough. If W∗ is too small, however, the resulting spectral
function will lose some weight at high frequencies because

numerical errors may cause energy truncation to effectively
also project out some contributions with energies smaller than
the energy truncation threshold εP .

C. Errors induced by recursion fitting and energy truncation

To better understand the error dependence on m, dK , and
nS observed in points (iv) to (vi) of Sec. V B above, let us
analyze in more detail the errors generated during recurrence
fitting (Sec. III A) and energy truncation (Sec. III B). The
error incurred when constructing |tn〉 from |tn−1〉 and |tn−2〉
using recurrence fitting is characterized by the relative fitting
error 	r

fit = 	fit/‖|tn〉‖2 [Eq. (31)]. The effect of projecting
out high-energy states using energy truncation |tn〉 → Ptr|tn〉
can be characterized by the average truncated weight per
site during one truncation sweep N

sweep
tr [Eq. (40)], and by

the relative truncation-induced state change 	r
tr = 	tr/‖|tn〉‖2

[Eq. (41)]. The latter measures intended changes in the
state due to the truncation of high-energy weight, but also
incorporates the effects of unavoidable numerical errors.

These quantities are analyzed in Fig. 10 in dependence on
m, dK , and nS . Continuing our list of observations from the
previous subsection, we note the following additional features:
(vii) Both 	r

fit and 	r
tr are smaller than 1% already for m = 32

[Fig. 10(a)], in accord with similar error margins for δED
n in

Fig. 9(c). (viii) Both 	r
fit and 	r

tr decrease with increasing
m, but 	r

tr does so more slowly, and its decrease seems to
saturate beyond m = 64. This implies that energy truncation
is the main limiting factor for CheMPS. The reason is that
the intended purpose of energy truncation, namely, to strip
|tn〉 from its high-energy components, modifies it in a way
so that the errors can not be reduced to arbitrarily small
values. Indeed, this is illustrated by the following two points:
(ix) While both 	tr and N

sweep
tr initially decrease with increas-

ing Krylov subspace dimension dK , the decrease saturates for
dK � 30 [Figs. 10(b) and 10(c)]. (x) While N

sweep
tr initially

decreases with the number of sweeps nS , the decrease saturates
already for nS � 10 [Fig. 10(c)]. Qualitatively, the behavior
shown in Fig. 10(c) is robust. (However, the choices of
other CheMPS control parameters do influence its quantitative
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details, such as the dK beyond which N
sweep
tr becomes dK

independent.) The lack of saturation of N
sweep
tr with nS implies

that there is no automatic stopping criterion for truncation
sweeps. Instead, the choice of nS can be optimized as described
in Sec. V B, where we already concluded that taking nS much
larger than 10 actually deteriorates the results.

When no exact results are available for comparison, the only
relevant error measures among all those listed in Eqs. (52) and
(53) are δ̃Ch and 	̃Ch. Nevertheless, Figs. 9(a)–9(d) show that
these measures provide a reasonable estimate of the actual
errors compared to the exact solution since the magnitudes
of δ̃Ch and δ̃ED are comparable. Moreover, Figs. 9(e) and 9(f)
show that the cumulative error measures 	̃Ch and 	̃ED reveal
the same trends for their dependence on CheMPS parameters
such as dK and nS . Hence, δ̃Ch and 	̃Ch may be used as
measures for optimizing CheMPS parameters and estimating
the errors of the final results.

Of course, truncation-induced errors can be avoided by
simply using the full bandwidth W∗ = W , for which no
truncation is necessary. However, in our experience, the gain in
resolution obtained by using, instead, an effective bandwidth
W∗ � W outweighs the small loss in accuracy incurred by the
necessity to then perform energy truncation.

VI. DENSITY MATRIX SPECTRA

The effects of energy truncation can be understood in more
detail by considering the reduced density matrix

ρ̂n = Trhalf |tn〉〈tn|, (55)

where the trace is over one half of the chain. Let us analyze the
n dependence of the spectrum of its eigenvalues, say, ρn(i). It
can be used to quantify the entanglement encoded in |tn〉 via
the associated entanglement or bond entropy

Sbond
n = −

∑
i

ρn(i) ln[ρn(i)]. (56)

Figure 11 shows such density matrix spectra for both the
RLM [panels (a) and (b)] and the HAFM [panels (c) and (d)]
calculated using both the full many-body bandwidth W∗ = W

[panels (a) and (c)] and a smaller effective bandwidth W∗
[panels (b) and (d)]. The n = 0 line in all panels shows the
eigenvalue spectrum ρ0(i), which reflects the entanglement
encoded in |t0〉 = Ĉ|0〉 at the start of the recursion procedure.
In principle, one would expect the entire spectrum of density
matrix eigenvalues ρn(i) to shift or rise to higher values as n

increases since multiplying |tn−1〉 by Ĥ ′ when calculating |tn〉
[cf. Eq. (30)] generates entanglement entropy. Such a spectral
rise with increasing n is indeed observed in all four panels of
Fig. 11, but the rise eventually saturates for sufficiently large n.
The speed of the initial stages of the rise differs from panel to
panel. For the density matrix spectra calculated without energy
truncation [Figs. 11(a) and 11(c)], the initial rise is rather slow,
in particular for the RLM [11(a), where the rise is preceded by a
slight initial decrease], reflecting the lack of strong correlations
of this model. In contrast, for density matrix spectra calculated
with energy truncation [Figs. 11(b) and 11(d)], the initial rise is
very rapid, and its subsequent saturation sets in at quite small
n (of order 20 to 30). Thus, energy truncation evidently has
the effect of increasing entanglement entropy. The reason is
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FIG. 11. (Color online) Eigenvalue spectra ρn(i) of the reduced
density matrix at the center of the system for several expansion vectors
|tn〉 of (a), (b) the RLM with Lb = 101, and (c), (d) the HAFM
with L = 100. In (a), (c), we used the full many-body bandwidth
W∗ = W without energy truncation, and in (b), (d) a reduced effective
bandwidth with energy truncation.

that the latter is calculated in a different basis (the eigenbasis
of ρ̂n) than that used to perform energy truncation (the local
eigenbasis of Ĥ ′).

According to 11(d), the small MPS dimension of m = 32
used for the HAFM in Fig. 5(a) in effect amounts to discarding
the contributions to the reduced density matrix of all states
with weight below a threshold of around 10−3. This threshold
is rather large compared to typical DMRG calculations, where
characteristic truncation errors lie in the range 10−6 to 10−8. It
is remarkable that CheMPS is nevertheless able to give rather
accurate results (such as reproducing CV results obtained using
mCV = 1500).

This efficiency appears to be an intrinsic feature of
CheMPS, arising from the recursive manner in which the
Chebyshev vectors |tn〉 are constructed. Evidence for this
conclusion is presented in Fig. 12(a), which shows the bond
entropy Sbond

n associated with |tn〉 as a function of recursion
number n. Remarkably, the bond entropy shows no tendencies
toward unbounded growth, even up to values as large as
n = 2000. Quite to the contrary, although the bond entropy
increases somewhat when increasing m from 32 to 128 (with
W∗ = 6.3), for either case it tends to decrease with recursion
number n, and similarly for the choice W∗ = W without
energy truncation. All of this is very encouraging since it
indicates that n can be increased, apparently at will, without
incurring any runaway growth of DMRG truncation errors.
The reasons for this fact will be recapitulated in the summary
below.

For comparison, Fig. 12(b) shows the bond entropy Sbond
t

of a tDMRG calculation of the time evolution of |ψ(t)〉 =
e−iĤ t Ŝx=50|0〉. This entropy is, overall, smaller than the Sbond

n

of the Chebyshev vectors because the initial state for the time
evolution involves an excitation at only one site, whereas the
starting state for the CheMPS recursion involved a linear
combination of local excitations Ŝk|0〉 [see Eq. (43)]. The
most striking difference between Sbond

n and Sbond
t , however, is

that the former shows no trend to increase with n, whereas
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FIG. 12. (Color online) Entanglement or bond entropy Sbond for
the k = π spectral function of the HAFM. (a) Sbond

n for the Chebyshev
vectors |tn〉 and (b) Sbond

t during the tDMRG time evolution of
e−iĤ t Ŝx=50|0〉. In both (a) and (b), solid and dashed lines show
the maximum bond entropy and the bond entropy at the middle of
the system, respectively. (a) Sbond

n is shown for two choices of W∗; the
dotted line is from a calculation with a reduced m = 32 and some
entropy is lost due to truncation. The red arrow marks the expansion
order roughly necessary to reach the time t = 85 using the tCheMPS
technique for W∗ = 6.3; here Nt�85 = 271. To reach the same time
using W∗ = W = 68.8, an order of expansion of Nt�85 = 2961 would
be necessary. (b) Sbond

t is shown for two choices of the truncation
error ερ .

the latter does with t . The increase in Sbond
t occurs in spurts,

which happen each time a spin wave gets reflected from one
of the ends of the system, at which point more numerical
resources are required to keep track of the superposition of
incident and reflected spin waves. For the present problem,
the increase in Sbond

t was not severe and remained completely
under control (staying below Sbond

n throughout). Nevertheless,
we do believe that the contrast between Figs. 12(a) and
12(b), showing a nonincreasing trend for Sbond

n versus an
increasing trend for Sbond

t , is striking and significant. It suggests
that, for situations that feature strong entanglement growth
with time, tCheMPS might be a promising alternative to
tDMRG.

VII. SUMMARY

In this paper, we have described CheMPS as a method
for calculating zero-temperature spectral functions of one-
dimensional quantum lattice models using a combination of
a Chebyshev expansion and MPS technology. To summarize

our analysis, we would like to highlight what we believe to
be the two most important features of CheMPS, namely, its
efficiency and its control of spectral resolution.

Efficiency. The first main feature is that CheMPS provides
an attractive compromise between accuracy and efficiency.
It is capable of reproducing correction-vector results in the
frequency domain and tDMRG results in the time domain
with comparably modest numerical resources. In particular,
surprisingly small values for the MPS dimension of m are
sufficient, even for obtaining spectral resolution high enough to
resolve finite-size effects in great detail. (For example, m = 32
sufficed for the spin- 1

2 antiferromagnetic Heisenberg model.)
This remarkable efficiency, which we had not anticipated
when commencing this study, appears to be a consequence
of several factors: (i) CheMPS does not suffer from a runaway
growth of DMRG truncation error with increasing n because
the information needed to construct the spectral function with
a specified accuracy, say O(1/N), is not encoded in a single
state, but uniformly distributed over N distinct Chebyshev
vectors |tn〉. (ii) These can be determined from Chebyshev
recurrence relations involving only three terms, so that it
is never necessary to accurately represent the sum of more
than two MPS. (iii) Moreover, these recurrence relations are
numerically stable, i.e., the inaccuracies in the calculation
of Chebyshev vectors |tn〉 do not cause the Chebyshev
expansion to diverge. (iv) Finally, the accuracy needed for
each |tn〉 is set by that needed for μn = 〈0|B|tn〉 [(25)],
which does not need to be better than the specified accuracy,
namely, O(1/N ).

For spectral functions with a finite spectral width WA (which
is typically much smaller than the many-body bandwidth
W ), CheMPS offers a further attractive feature for enhancing
efficiency: one may use an “effective bandwidth” W∗ of order
WA (we typically take W∗ = 2WA), which enhances spectral
resolution by a factor W/W∗, at the cost of requiring additional
energy truncation sweeps. The latter are not necessary if
one takes W∗ = W , but then considerably higher expansion
orders are necessary to achieve comparable resolution. In
our experience, the benefits of enhanced resolution offered
by the choice W∗ = 2WA outweigh the costs of energy
truncation.

Control of spectral resolution. The second main feature
of CheMPS is that it offers very convenient control of the
accuracy and resolution of the resulting spectral function by
simply adjusting the expansion order N . This is particularly
useful for studying finite-size effects, as exemplified in Fig. 5.
On the one hand, Fig. 5(b) shows very strikingly that the
structure factor of an HAFM chain of finite length is dominated
by a set of discrete subpeaks, which may be associated with
the quantized eigenenergies of spin-wave excitations in a finite
system. CheMPS allows the energies and weights of these
excitations, and their dependence on L, to be determined
with unprecedented accuracy and ease by simply increasing
N until the peaks are well resolved. On the other hand,
Fig. 5(f) shows that the limit L → ∞ may be mimicked by
choosing N just small enough that the finite-size subpeaks are
smeared out. Although the peak shape thus obtained is slightly
overbroadened [see inset of Fig. 5(f)], this overbroadening
can be eliminated completely (see Fig. 7) by using a discrete
representation of the spectral function that uses the energies
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and weights of the discrete subpeaks as input. The ability
to fully eliminate overbroadening effects even for very large
many-body systems is, to the best of our knowledge, a unique
feature of CheMPS.

On a technical level, the implementation of CheMPS
requires only standard MPS techniques, such as the addition
of different states and the multiplication of operators. For
energy truncation, single-site sweeping needs to be set up with
a new kind of local update, as described in III B. However,
this procedure is not too different from other known local
update prescriptions and can be implemented with modest
programming effort.

VIII. OUTLOOK

Regarding future applications of CheMPS, two directions
for further methodological development appear particularly
promising, namely, time dependence and finite temperature. A
few comments are due about each.

Time dependence. While the good agreement between
tCheMPS and tDMRG reported in 8 is encouraging, a detailed
analysis of tCheMPS should be performed to understand
the nature of its error growth with time, and to explore
under which conditions, if any, tCheMPS offers competitive
advantages relative to tDMRG. On the one hand, tDMRG
has the advantage that highly efficient Krylov methods can
be used to optimize the evaluation of e−iĤ	t |ψ(t)〉 w.r.t.
the state |ψ(t)〉 being propagated; however, its numerical
costs increase rapidly if |ψ(t)〉 contains a broad spectrum of
excited states. On the other hand, CheMPS has the advantage
(i) that the Chebyshev expansion of the operator e−iĤ t can
be applied with equal accuracy to every state in the Hilbert
space, in particular, also highly excited ones. Moreover,
(ii) very large evolution times might be achieved more easily
with tCheMPS than tDMRG since the former represents |ψ(t)〉
as a sum over many Chebyshev vectors [see Eq. (6)], thereby
being potentially less susceptible than tDMRG to the growth
of truncation errors (as discussed in the Introduction, and
exemplified in 12). We expect that, for some applications,
(i) and/or (ii) may offer advantages for tCheMPS over tDMRG,
e.g., for calculating quantum quenches starting from strongly
nonequilibrium initial states, but leave a detailed investigation
to the future.

Finite temperature. The fact that CheMPS uniformly
resolves the entire energy spectrum of Ĥ suggests that it should
be particularly suited for calculating the spectral functions
ABC

T (ω) = ∫
dt
2π

eiωtGBC
T (t) of finite-temperature correlators

such as

GBC
T (t) = Tr[ρ̂T B̂(t)Ĉ(0)], ρ̂T = e−βĤ

Z
. (57)

According to Ref. 5, such a spectral function can be evalu-
ated using Chebyshev expansions by proceeding as follows:
Express the partition function as

Z =
∫

dω e−βωρ(ω) (58a)

by introducing the density of states
ρ(ω) = Tr[δ(ω − Ĥ )], (58b)

and the spectral function as

ABC
T (ω) = 1

Z

∫
dω̄ e−βω̄ρBC(ω̄,ω + ω̄) (59a)

by introducing the density of matrix elements39,40

ρBC(ω̄,ω) = Tr[δ(ω̄ − Ĥ ) B̂ δ(ω − Ĥ ) Ĉ]. (59b)

Then, Chebyshev expand the δ functions in Eqs. (58b) and
(59b) using Eq. (23) (after suitably rescaling Hamiltonian and
frequencies). The resulting Chebyshev expansions will contain
moments of the form

μρ
n = Tr[Tn(Ĥ ′)], (60a)

μBC
nn′ = Tr[Tn(Ĥ ′) B̂ Tn′(Ĥ ′) Ĉ]. (60b)

We now note that this framework is very well suited for an
MPO implementation, which would consist of three steps:
(i) Using Chebyshev recurrence relations, recursively con-
struct and store MPO representations for each operator
Tn(Ĥ ′); we expect (based on our experience with the
Chebyshev vectors |tn〉) that this should be possible without
runaway costs in numerical resources since the construction
of Tn(Ĥ ′) requires only Ĥ ′Tn−1(Ĥ ′) and Tn−2(Ĥ ′). (ii) Cal-
culate the moments in Eqs. (VIII) by evaluating the traces,
which is straightforward in the context of MPS and MPO.
(iii) Insert the resulting moments into the reconstructed
Chebyshev expansions for ρ(ω) and ρBC(ω̄,ω), and finally
evaluate the integrals Eqs. (58a) and (59a). Note the economy
of this scheme: After once constructing the MPO for each
Tn(Ĥ ′), and once evaluating the trace for each moment μ

ρ
n

and μBC
nn′ , the spectral function ABC

T (ω) can be calculated for
arbitrary combinations of ω and T . The implementation of this
strategy is left for future studies.

We conclude by remarking that the idea of using Chebyshev
expansions in the context of many-body numerics, advocated
in inspiring fashion in Ref. 5, can be implemented in
combination with any method that is able to efficiently apply a
Hamiltonian Ĥ to a state |ψ〉. Chebyshev expansions optimize
the resolution that can be extracted from a limited number
of applications of Ĥ . While CheMPS is based on doing
this using MPS methods for one-dimensional lattice models,
similar developments have been pursued within the context
of exact diagonalization41,42 and Monte Carlo43 methods, and
Chebyshev expansions should also be useful in combination
with tensor network methods for two-dimensional quantum
lattice models.
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APPENDIX: RESONANT LEVEL MODEL

This appendix introduces the fermionic resonant level
model that was used for the error analysis of Sec. V and
presents CheMPS results for its spectral functions. The RLM
is defined by the following Hamiltonian:

ĤRLM =
nd∑
i=1

εi d̂
†
i d̂ i +

nd∑
i=1

Vi

Lb∑
k=1

(d̂†
i ĉk + H.c.)

+
Lb∑
k=1

εkĉ
†
kĉk. (A1)

It describes a set of nd discrete, “local” noninteracting fermion
levels with energies εi that hybridize with strengths Vi with
a band of Lb (�) fermion levels with energies εk , assumed
uniformly spaced within the interval [−Wb,Wb]. We choose
Wb = 1 as unit of energy throughout this section. We will
parametrize the hybridization strengths Vi in terms of the
associated level widths �i = π Lb

2 V 2
i .

The spectral function Aij (ω) ≡ A+
ij (ω) + A−

ij (ω) has two
contributions,

A+
ij (ω) ≡ Adi d

†
j (ω), A−

ij (ω) ≡ Ad
†
j di (−ω), (A2)

describing particle and hole excitations, which, at T = 0, are
proportional to step functions θ (±ω) that vanish for ω < or
> 0, respectively. Since the RLM Hamiltonian is quadratic,
the problem can be solved by diagonalizing the single-particle
problem. In the continuum limit Lb → ∞, this yields the
following exact expression for the spectral function44 for
|ω| < Db = 1:

A∞
ij (ω) = lim

η→0+
− 1

π
� ([ω + iη − ϒ − 	(ω)]−1)ij ,

ϒij = εiδij , 	ij (ω) = 1

π

√
�i�j

(
ln

∣∣∣∣ω − Db

ω + Db

∣∣∣∣ − iπ

)
,

(A3)

where ϒ and 	 are matrices of dimension nd × nd . The
Chebyshev moments μn for the finite system of length L can
also be found exactly by evaluating the expectation values
[Eq. (24)], using the (numerically determined) exact single-
particle eigenstates of Ĥ .

The Hamiltonian (A1) corresponds to a “star geometry”
since each local level couples to every band level. For
the purposes of using CheMPS, however, it needs to be
transformed to a “chain geometry” of the form

ĤRLM =
nd∑
i=1

εi d̂
†
i d̂ i +

nd∑
i=1

√
2�i

π
(d̂†

i f̂ 1 + H.c.)

+
Lb−1∑
�=1

λ�(f̂ †
�f̂ �+1 + H.c.). (A4)

This can be achieved45 by using Lanczos tridiagonalization
of the band part of the Hamiltonian, thereby determining the
hopping coefficients λ�.

Starting from Eq. (A4), we have used CheMPS to calculate
the diagonal components Ajj of the RLM spectral function
for a model with nd = 3 local levels. In contrast to Sec. IV C,
our interest here is not in analyzing finite-size effects, but in
determining how the CheMPS parameters need to be adjusted
to recover the exact continuum functionA∞

jj of Eq. (A3). Thus,
we purposefully chose a set of model parameters leading to
three well-separated peaks of slightly different widths, taking
εj ∈ {−0.5,0.1,0.6} and �j ∈ {0.04,0.06,0.03}, and chose the
number of band levels Lb = 101 large enough so that the
finite-size spacing ωL 
 1/Lb = 0.01 is somewhat smaller
than the smallest peak width �3. By choosing the expansion
order for each curve such that the effective broadening lies in
the window between the finite-size spacing and the intrinsic
peak width ωL < ηN < �j , it should be possible to reveal the
shape of A∞

jj quite accurately without yet resolving finite-size
subpeaks (although traces of the latter might show up for A33,
for which this window is small). To this end, we used the
following criterion for choosing N when reconstructing AN

jj :
the effective broadening ηN was taken as large as possible
without lowering the peak height significantly below that of
A∞

jj (this corresponds to choosing ηN � �j ).
The results of these calculations are summarized in Fig. 13;

all spectra shown there were obtained by performing separate
expansions for the positive and negative branches A±

jj (ω) (with
one exception, noted below).

Figures 13(a1)–13(g1) were calculated using an effective
bandwidth of W∗ = 2.0 (with εt = 0.025) for each branch,
corresponding to roughly twice the spectral width of each
branch, which is of order of the single-particle bandwidth
WA 
 Wb = 1. For this choice, an MPS dimension of merely
m = 32 was found to suffice for accurate recurrence fitting.
Figure 13(a1) illustrates a number of points: (i) By choosing ηN

according to the above criterion of recovering the correct peak
height, excellent agreement with the continuum limit A∞ of
Eq. (A3) is obtained over most of the frequency range. (ii) This
is the case both with and without Jackson damping (thin black
or blue lines, respectively), but, with Jackson damping, higher
expansion orders are needed to obtain the correct peak heights
since Jackson damping induces some artificial broadening [by
a factor of π , see Eq. (18a)]. (iii) Small oscillations remain in
some frequency ranges [see Figs. 13(b1)–13(g1) for zooms].
These stem from three sources: finite-size subpeaks, numerical
inaccuracies, and step-function artifacts near ω = 0 [cf. points
(iv), (vi), and (viii) below, respectively]. (iv) For the spectrum
with the narrowest peak A33, the window between ωL and �33

is so small that the criterion of reproducing the continuum
peak height implies that small finite-size subpeak remain
visible [see Figs. 13(e1)–13(g1) for zooms]. (v) In contrast,
such oscillations are almost entirely absent for the broadest
peak A22 [see Figs. 13(d1) and 13(e1)] since its width �2 is
somewhat larger than ωL.

To illustrate the effect of energy truncation, Figs. 13(a2)–
13(g2) show the same spectral functions as Figs. 13(a1)–
13(g1), but now setting W∗ = W , the full many-body band-
width (here = 52.3), so that no energy truncation is needed.
This allows us to make some additional instructive ob-
servations: (vi) Using the full bandwidth yields results of
higher quality, in that numerical artifacts are significantly
weaker (except near ω = 0) [compare Figs. 13(d2)–13(g2)
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FIG. 13. (Color online) Diagonal spectral functions Ajj (ω) of a three-level RLM. Thick solid lines show the continuum limit A∞
jj (ω)

from (A3). Dashed and dashed–double-dotted lines show CheMPS results AN
jj,J or AN

jj , with or without Jackson broadening, respectively,
calculated for Lb = 101 band levels. For each spectrum, the effective broadening ηN was taken as large as possible without lowering the
peak height significantly below that of A∞

jj . In (a1)–(g1), we used an effective bandwidth of W∗ = 2.0 and, in (a2)–(g2), the full many-body
bandwidth W∗ = 52.3. The latter requires significantly larger expansion orders, but exhibits less numerical inaccuracies [compare (b1)–(g1)
and (b2)–(g2)], which represent zooms of the rectangles indicated in (a1) and (a2), respectively. (b), (c): Gibbs oscillations arise if A±(ω) are
expanded separately, so that CheMPS attempts to resolve their θ (±ω) steps. Expanding instead their sum A+(ω) + A−(−ω), and performing
a Jackson-damped reconstruction, we obtain the smooth dashed-dotted line in (b1)–(e1) (calculated using ED moments). (d), (e) AN

22 nicely
reproduces A∞

22 because the peak is somewhat broader than ωL. (e)–(g) AN
33 shows small but distinct finite-size wiggles because the main peak

is so sharp and narrow that recovering its height fully requires an ηN so small that it is comparable to ωL.

and 13(d1)–13(g1)]. The reason is that energy truncation
constitutes CheMPS’s dominant source of error (as shown in
Sec. V below); its avoidance thus yields more precise Cheby-
shev moments μn, especially for n > Nmax. (vii) However, this
improvement is numerically expensive: the increased effective
bandwidth necessitates larger expansion orders N , which in
turn require a higher MPS dimension (here m = 128). (viii) For
the present model, it was possible to calculate several thousand
moments without encountering numerical instabilities; this
illustrates the fact that the Chebyshev recurrence relations are
numerically stable.

Finally, let us address (ix) the wiggly artifacts near ω = 0.
They reflect the fact that CheMPS was separately applied to
the positive and negative branches of the spectral function
A±(ω), shown in zooms in Figs. 13(b) and 13(c), respectively.
These are proportional to step functions θ (±ω), and hence
abruptly dip to zero for ω < 0 or > 0, respectively. The
wiggly artifacts correspond to Gibbs oscillations decorating
these sharps dips. This problem can be avoided by performing
a single Chebyshev expansion of the sumA+(ω) + A−(−ω),
which is a smooth function and leads to the perfectly

smooth long-dashed line in Figs. 13(b) and 13(c). This
improvement comes at roughly twice the numerical cost
since it requires a doubling of the spectral range to ω ∈
[−WA,WA]. This implies a slight but obvious modification
of the transformations from ω to ω′ and from H to Ĥ ′ to
account for the shifted range of ω; a doubling of W∗ and,
hence of the expansion order N , required to achieve a specified
resolution.

The main conclusions from our CheMPS calculations for
the RLM are as follows: The strategy of using twice the spectral
width as effective bandwidth (W∗ = 2WA) and performing
energy truncation [Fig. 13(a)] is a satisfactory compromise
between efficiency (only a few hundred Chebyshev moments
are needed) and accuracy (for which energy truncation is
the main limiting factor). If desired, better results can be
obtained by using the full bandwidth (W∗ = W ) and thus
avoiding energy truncation, albeit at the cost of significantly
increasing the required expansion order by the factor W/2WA.
Nevertheless, the calculation of Chebyshev moments μn with
very large n is feasible due to the remarkably numerical
stability of Chebyshev recurrence relations.
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