353 research outputs found

    Capacity of Second-Growth Douglas-fir and Western Hemlock Stump Anchors for Cable Logging

    Get PDF
    The use of small instead of large stumps for cable logging anchors will usually result in applied loads approaching the load capacity of the anchors more closely. The use of small stump anchors is then contingent on better means of assessing their capacity. The results of field load tests of Douglas-fir and western hemlock stump anchors are reported. Ultimate loads were modeled as power functions of DBH. In addition, the relation between load and movement relationships for the stumps are modeled using a hyperbolic function that also provides an estimate of ultimate load. Practical use of the model equations requires knowledge of failure statistics and the acceptance of a probabilistic anchor capacity. Probability is applied to the re-rigging required when an anchor fails to perform adequately and to total pull-out failure

    A nexus perspective on competing land demands: Wider lessons from a UK policy case study

    Get PDF
    As nations develop policies for low-carbon transitions, conflicts with existing policies and planning tools are leading to competing demands for land and other resources. This raises fundamental questions over how multiple demands can best be managed. Taking the UK as an empirical example, this paper critiques current policies and practices to explore the interdependencies at the water-energy-food nexus. It considers how current land uses and related policies affect the UK’s resilience to climate change, setting out an agenda for research and practice relevant to stakeholders in land-use management, policy and modelling. Despite recent progress in recognising such nexus challenges, most UK land-related policies and associated science continue to be compartmentalised by both scale and sector and seldom acknowledge nexus interconnections. On a temporal level, the absence of an over-arching strategy leaves inter-generational trade-offs poorly considered. Given the system lock-in and the lengthy policy-making process, it is essential to develop alternative ways of providing dynamic, flexible, practical and scientifically robust decision support for policy-makers. A range of ecosystem services need to be valued and integrated into a resilient land-use strategy, including the introduction of non-monetary, physical-unit constraints on the use of particular services

    Large deglacial shifts of the Pacific Intertropical Convergence Zone

    Get PDF
    The position of the Intertropical Convergence Zone (ITCZ) is sensitive to changes in the balance of heat between the hemispheres which has fundamental implications for tropical hydrology and atmospheric circulation. Although the ITCZ is thought to experience the largest shifts in position during deglacial stadial events, the magnitude of shifts has proven difficult to reconstruct, in part because of a paucity of high-resolution records, particularly those including spatial components. Here we track the position of the ITCZ from 150 to 110 ka at three sites in the central equatorial Pacific at sub-millennial time resolution. Our results provide evidence of large, abrupt changes in tropical climate during the penultimate deglaciation, coincident with North Atlantic Heinrich Stadial 11 (~136–129 ka). We identify this event both as a Northern Hemisphere increase in aeolian dust and as a shift in the mean position of the ITCZ a minimum of 4° southwards at 160° W

    Productivity patterns in the Equatorial Pacific over the last 30,000 years

    Get PDF
    The equatorial Pacific traverses a number of productivity regimes, from the highly productive coastal upwelling along Peru to the near gyre-like productivity lows along the international dateline, making it an ideal target for investigating how biogeochemical systems respond to changing oceanographic conditions over time. However, conflicting reconstructions of productivity during periods of rapid climate change, like the last deglaciation, render the spatiotemporal response of equatorial Pacific productivity ambiguous. In this study, surface productivity since the last glacial period (30,000 years ago) is reconstructed from seven cores near the Line Islands, central equatorial Pacific, and integrated with productivity records from across the equatorial Pacific. Three coherent deglacial patterns in productivity are identified: (1) a monotonic glacial-Holocene increase in productivity, primarily along the Equator, associated with increasing nutrient concentrations over time; (2) a deglacial peak in productivity ~15,000 years ago due to transient entrainment of nutrient rich southern-sourced deep waters; and (3) possible precessional cycles in productivity in the eastern equatorial Pacific that may be related to Intertropical Convergence Zone migration and potential interactions with El Niño–Southern Oscillation dynamics. These findings suggest that productivity was generally lower during the glacial period, a trend observed zonally across the equatorial Pacific, while deglacial peaks in productivity may be prominent only in the east

    Repeated storage of respired carbon in the equatorial Pacific Ocean over the last three glacial cycles

    Get PDF
    As the largest reservoir of carbon exchanging with the atmosphere on glacial–interglacial timescales, the deep ocean has been implicated as the likely location of carbon sequestration during Pleistocene glaciations. Despite strong theoretical underpinning for this expectation, radiocarbon data on watermass ventilation ages conflict, and proxy interpretations disagree about the depth, origin and even existence of the respired carbon pool. Because any change in the storage of respiratory carbon is accompanied by corresponding changes in dissolved oxygen concentrations, proxy data reflecting oxygenation are valuable in addressing these apparent inconsistencies. Here, we present a record of redox-sensitive uranium from the central equatorial Pacific Ocean to identify intervals associated with respiratory carbon storage over the past 350 kyr, providing evidence for repeated carbon storage over the last three glacial cycles. We also synthesise our data with previous work and propose an internally consistent picture of glacial carbon storage and equatorial Pacific Ocean watermass structure

    Affective Decision-making Predictive of Chinese Adolescent Drinking Behaviors

    Get PDF
    The goal of the current investigation was to address whether affective decision making would serve as a unique neuropsychological marker to predict drinking behaviors among adolescents. We conducted a longitudinal study of 181 Chinese adolescents in Chengdu city, China. In their 10th grade (ages 15–16), these adolescents were tested for their affective decision-making ability using the Iowa Gambling Task (IGT) and working memory capacity using the Self-Ordered Pointing Test. Self-report questionnaires were used to assess academic performance and drinking behaviors. At 1-year follow-up, questionnaires were completed to assess drinking behaviors, and the UPPS Impulsive Behavior Scale was used to examine four dimensions of impulsivity: urgency, lack of premeditation, lack of perseverance, and sensation seeking. Results indicated that those adolescents who progressed to binge drinking or exhibited consistent binge drinking not only performed poorly on the IGT but also scored significantly higher in urgency compared to those who never or occasionally drank. Moreover, better IGT scores predicted fewer drinking problems and fewer drinks 1 year later after controlling for demographic variables, the previous drinking behaviors, working memory, and impulsivity. These findings suggest that deficits in affective decision making may be important independent determinants of compulsive drinking and potentially addictive behavior in adolescents. (JINS, 2009, 15, 547–557.

    230 Th normalization: new insights on an essential tool for quantifying sedimentary fluxes in the modern and quaternary ocean

    Get PDF
    © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Costa, K. M., Hayes, C. T., Anderson, R. F., Pavia, F. J., Bausch, A., Deng, F., Dutay, J., Geibert, W., Heinze, C., Henderson, G., Hillaire-Marcel, C., Hoffmann, S., Jaccard, S. L., Jacobel, A. W., Kienast, S. S., Kipp, L., Lerner, P., Lippold, J., Lund, D., Marcantonio, F., McGee, D., McManus, J. F., Mekik, F., Middleton, J. L., Missiaen, L., Not, C., Pichat, S., Robinson, L. F., Rowland, G. H., Roy-Barman, M., Alessandro, Torfstein, A., Winckler, G., & Zhou, Y. 230 Th normalization: new insights on an essential tool for quantifying sedimentary fluxes in the modern and quaternary ocean. Paleoceanography and Paleoclimatology, 35(2), (2020): e2019PA003820, doi:10.1029/2019PA003820.230Th normalization is a valuable paleoceanographic tool for reconstructing high‐resolution sediment fluxes during the late Pleistocene (last ~500,000 years). As its application has expanded to ever more diverse marine environments, the nuances of 230Th systematics, with regard to particle type, particle size, lateral advective/diffusive redistribution, and other processes, have emerged. We synthesized over 1000 sedimentary records of 230Th from across the global ocean at two time slices, the late Holocene (0–5,000 years ago, or 0–5 ka) and the Last Glacial Maximum (18.5–23.5 ka), and investigated the spatial structure of 230Th‐normalized mass fluxes. On a global scale, sedimentary mass fluxes were significantly higher during the Last Glacial Maximum (1.79–2.17 g/cm2kyr, 95% confidence) relative to the Holocene (1.48–1.68 g/cm2kyr, 95% confidence). We then examined the potential confounding influences of boundary scavenging, nepheloid layers, hydrothermal scavenging, size‐dependent sediment fractionation, and carbonate dissolution on the efficacy of 230Th as a constant flux proxy. Anomalous 230Th behavior is sometimes observed proximal to hydrothermal ridges and in continental margins where high particle fluxes and steep continental slopes can lead to the combined effects of boundary scavenging and nepheloid interference. Notwithstanding these limitations, we found that 230Th normalization is a robust tool for determining sediment mass accumulation rates in the majority of pelagic marine settings (>1,000 m water depth).We thank Zanna Chase and one anonymous reviewer for valuable feedback. K. M. C. was supported by a Postdoctoral Scholarship at WHOI. L. M. acknowledges funding from the Australian Research Council grant DP180100048. The contribution of C. T. H., J. F. M., and R. F. A. were supported in part by the U.S. National Science Foundation (US‐NSF). G. H. R. was supported by the Natural Environment Research Council (grant NE/L002434/1). S. L. J. acknowledges support from the Swiss National Science Foundation (grants PP002P2_144811 and PP00P2_172915). This study was supported by the Past Global Changes (PAGES) project, which in turn received support from the Swiss Academy of Sciences and the US‐NSF. This work grew out of a 2018 workshop in Aix‐Marseille, France, funded by PAGES, GEOTRACES, SCOR, US‐NSF, Aix‐Marseille Université, and John Cantle Scientific. All data are publicly available as supporting information to this document and on the National Center for Environmental Information (NCEI) at https://www.ncdc.noaa.gov/paleo/study/28791

    Small Molecule Inhibitors of Staphylococcus aureus RnpA Alter Cellular mRNA Turnover, Exhibit Antimicrobial Activity, and Attenuate Pathogenesis

    Get PDF
    Methicillin-resistant Staphylococcus aureus is estimated to cause more U.S. deaths annually than HIV/AIDS. The emergence of hypervirulent and multidrug-resistant strains has further amplified public health concern and accentuated the need for new classes of antibiotics. RNA degradation is a required cellular process that could be exploited for novel antimicrobial drug development. However, such discovery efforts have been hindered because components of the Gram-positive RNA turnover machinery are incompletely defined. In the current study we found that the essential S. aureus protein, RnpA, catalyzes rRNA and mRNA digestion in vitro. Exploiting this activity, high through-put and secondary screening assays identified a small molecule inhibitor of RnpA-mediated in vitro RNA degradation. This agent was shown to limit cellular mRNA degradation and exhibited antimicrobial activity against predominant methicillin-resistant S. aureus (MRSA) lineages circulating throughout the U.S., vancomycin intermediate susceptible S. aureus (VISA), vancomycin resistant S. aureus (VRSA) and other Gram-positive bacterial pathogens with high RnpA amino acid conservation. We also found that this RnpA-inhibitor ameliorates disease in a systemic mouse infection model and has antimicrobial activity against biofilm-associated S. aureus. Taken together, these findings indicate that RnpA, either alone, as a component of the RNase P holoenzyme, and/or as a member of a more elaborate complex, may play a role in S. aureus RNA degradation and provide proof of principle for RNA catabolism-based antimicrobial therapy

    Lower export production during glacial periods in the equatorial Pacific derived from (231Pa/230Th)xs,0 measurements in deep-sea sediments

    Get PDF
    Author Posting. © American Geophysical Union, 2004. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Paleoceanography 19 (2004): PA4023, doi:10.1029/2003PA000994.The (231Pa/230Th)xs,0 records obtained from two cores from the western (MD97-2138; 1°25′S, 146°24′E, 1900 m) and eastern (Ocean Drilling Program Leg 138 Site 849, 0°11.59′N, 110°31.18′W, 3851 m) equatorial Pacific display similar variability over the last 85,000 years, i.e., from isotopic stages 1 to 5a, with systematically higher values during the Holocene, isotopic stage 3, and isotopic stage 5a, and lower values, approaching the production rate ratio of the two isotopes (0.093), during the colder periods corresponding to isotopic stages 2 and 4. We have also measured the 230Th-normalized biogenic preserved and terrigenous fluxes, as well as major and trace elements concentrations, in both cores. The (231Pa/230Th)xs,0 results combined with the changes in preserved carbonate and opal fluxes at the eastern site indicate lower productivity in the eastern equatorial Pacific during glacial periods. The (231Pa/230Th)xs,0 variations in the western equatorial Pacific also seem to be controlled by productivity (carbonate and/or opal). The generally high (231Pa/230Th)xs,0 ratios (>0.093) of the profile could be due to opal and/or MnO2 in the sinking particles. The profiles of (231Pa/230Th)xs,0 and 230Th-normalized fluxes indicate a decrease in exported carbonate, and possibly opal, during isotopic stages 2 and 4 in MD97-2138. Using 230Th-normalized flux, we also show that sediments from the two cores were strongly affected by sediment redistribution by bottom currents suggesting a control of mass accumulation rates by sediment focusing variability.SP funding for this research was provided by grants from the French Minister of Research and a EURODOC grant of the Re´gion Rhoˆne-Alpes (SAFIR-980065327). SP also gratefully acknowledges the financial support of the WHOI Geology and Geophysics Dept. This work was also supported by a CNRS-NSF grant (SP and KWWS). The contribution of JFM to this study was supported in part by the US NSF and by WHOI OCCI and Mellon awards
    corecore