7 research outputs found

    Life in Groups: The Roles of Oxytocin in Mammalian Sociality

    Get PDF
    In recent decades, scientific understanding of the many roles of oxytocin (OT) in social behavior has advanced tremendously. The focus of this research has been on maternal attachments and reproductive pair-bonds, and much less is known about the substrates of sociality outside of reproductive contexts. It is now apparent that OT influences many aspects of social behavior including recognition, trust, empathy, and other components of the behavioral repertoire of social species. This review provides a comparative perspective on the contributions of OT to life in mammalian social groups. We provide background on the functions of OT in maternal attachments and the early social environment, and give an overview of the role of OT circuitry in support of different mating systems. We then introduce peer relationships in group-living rodents as a means for studying the importance of OT in non-reproductive affiliative behaviors. We review species differences in oxytocin receptor (OTR) distributions in solitary and group-living species of South American tuco-tucos and in African mole-rats, as well as singing mice. We discuss variation in OTR levels with seasonal changes in social behavior in female meadow voles, and the effects of OT manipulations on peer huddling behavior. Finally, we discuss avenues of promise for future investigation, and relate current findings to research in humans and non-human primates. There is growing evidence that OT is involved in social selectivity, including increases in aggression toward social outgroups and decreased huddling with unfamiliar individuals, which may support existing social structures or relationships at the expense of others. OT’s effects reach beyond maternal attachment and pair bonds to play a role in affiliative behavior underlying “friendships”, organization of broad social structures, and maintenance of established social relationships with individuals or groups

    Septal Oxytocin Administration Impairs Peer Affiliation via V1a Receptors in Female Meadow Voles

    Get PDF
    The peptide hormone oxytocin (OT) plays an important role in social behaviors, including social bond formation. In different contexts, however, OT is also associated with aggression, social selectivity, and reduced affiliation. Female meadow voles form social preferences for familiar same-sex peers under short, winter-like day lengths in the laboratory, and provide a means of studying affiliation outside the context of reproductive pair bonds. Multiple lines of evidence suggest that the actions of OT in the lateral septum (LS) may decrease affiliative behavior, including greater density of OT receptors in the LS of meadow voles that huddle less. We infused OT into the LS of female meadow voles immediately prior to cohabitation with a social partner to determine its effects on partner preference formation. OT prevented the formation of preferences for the partner female. Co-administration of OT with a specific OT receptor antagonist did not reverse the effect, but co-administration of OT with a specific vasopressin 1a receptor (V1aR) antagonist did, indicating that OT in the LS likely acted through V1aRs to decrease partner preference. Receptor autoradiography revealed dense V1aR binding in the LS of female meadow voles. These results suggest that the LS is a brain region that may be responsible for inhibitory effects of OT administration on affiliation, which will be important to consider in therapeutic administrations of OT

    Biological Contribution to Social Influences on Alcohol Drinking: Evidence from Animal Models

    Get PDF
    Social factors have a tremendous influence on instances of heavy drinking and in turn impact public health. However, it is extremely difficult to assess whether this influence is only a cultural phenomenon or has biological underpinnings. Research in non-human primates demonstrates that the way individuals are brought up during early development affects their future predisposition for heavy drinking, and research in rats demonstrates that social isolation, crowding or low social ranking can lead to increased alcohol intake, while social defeat can decrease drinking. Neurotransmitter mechanisms contributing to these effects (i.e., serotonin, GABA, dopamine) have begun to be elucidated. However, these studies do not exclude the possibility that social effects on drinking occur through generalized stress responses to negative social environments. Alcohol intake can also be elevated in positive social situations, for example, in rats following an interaction with an intoxicated peer. Recent studies have also begun to adapt a new rodent species, the prairie vole, to study the role of social environment in alcohol drinking. Prairie voles demonstrate a high degree of social affiliation between individuals, and many of the neurochemical mechanisms involved in regulation of these social behaviors (for example, dopamine, central vasopressin and the corticotropin releasing factor system) are also known to be involved in regulation of alcohol intake. Naltrexone, an opioid receptor antagonist approved as a pharmacotherapy for alcoholic patients, has recently been shown to decrease both partner preference and alcohol preference in voles. These findings strongly suggest that mechanisms by which social factors influence drinking have biological roots, and can be studied using rapidly developing new animal models

    Identification of subpopulations of prairie voles differentially susceptible to peer influence to decrease high alcohol intake

    Get PDF
    Peer influences are critical in the decrease of alcohol (ethanol) abuse and maintenance of abstinence. We previously developed an animal model of inhibitory peer influences on ethanol drinking using prairie voles and here sought to understand whether this influential behavior was due to specific changes in drinking patterns and to variation in a microsatellite sequence in the regulatory region of the vasopressin receptor 1a gene (avpr1a). Adult prairie voles’ drinking patterns were monitored in a lickometer apparatus that recorded each lick a subject exhibited during continuous access to water and 10% ethanol during periods of isolation, pair housing of high and low drinkers, and subsequent isolation. Analysis of fluid consumption confirmed previous results that high drinkers typically decrease ethanol intake when paired with low drinkers, but that a subset of voles do not decrease. Analysis of bout structure revealed differences in the number of ethanol drinking bouts in the subpopulations of high drinkers when paired with low drinkers. Lickometer drinking patterns analyzed by visual and by cross-correlation analyses demonstrated that pair housing did not increase the rate of subjects drinking in bouts occurring at the same time. The length of the avpr1a microsatellite did not predict susceptibility to peer influence or any other drinking behaviors. In summary, subpopulations of high drinkers were identified by fluid intake and number of drinking bouts, which did or did not lower their ethanol intake when paired with a low drinking peer, and these subpopulations should be explored for testing the efficacy of treatments to decrease ethanol use in groups that are likely to be responsive to different types of therapy

    Septal oxytocin administration impairs peer affiliation via V1a receptors in female meadow voles

    No full text
    The peptide hormone oxytocin (OT) plays an important role in social behaviors, including social bond formation. In different contexts, however, OT is also associated with aggression, social selectivity, and reduced affiliation. Female meadow voles form social preferences for familiar same-sex peers under short, winter-like day lengths in the laboratory, and provide a means of studying affiliation outside the context of reproductive pair bonds. Multiple lines of evidence suggest that the actions of OT in the lateral septum (LS) may decrease affiliative behavior, including greater density of OT receptors in the LS of meadow voles that huddle less. We infused OT into the LS of female meadow voles immediately prior to cohabitation with a social partner to determine its effects on partner preference formation. OT prevented the formation of preferences for the partner female. Co-administration of OT with a specific OT receptor antagonist did not reverse the effect, but co-administration of OT with a specific vasopressin 1a receptor (V1aR) antagonist did, indicating that OT in the LS likely acted through V1aRs to decrease partner preference. Receptor autoradiography revealed dense V1aR binding in the LS of female meadow voles. These results suggest that the LS is a brain region that may be responsible for inhibitory effects of OT administration on affiliation, which will be important to consider in therapeutic administrations of OT
    corecore