26 research outputs found

    Attributable deaths and disability-adjusted life-years caused by infections with antibiotic-resistant bacteria in the EU and the European Economic Area in 2015: a population-level modelling analysis

    Get PDF
    Background: Infections due to antibiotic-resistant bacteria are threatening modern health care. However, estimating their incidence, complications, and attributable mortality is challenging. We aimed to estimate the burden of infections caused by antibiotic-resistant bacteria of public health concern in countries of the EU and European Economic Area (EEA) in 2015, measured in number of cases, attributable deaths, and disability-adjusted life-years (DALYs). Methods: We estimated the incidence of infections with 16 antibiotic resistance–bacterium combinations from European Antimicrobial Resistance Surveillance Network (EARS-Net) 2015 data that was country-corrected for population coverage. We multiplied the number of bloodstream infections (BSIs) by a conversion factor derived from the European Centre for Disease Prevention and Control point prevalence survey of health-care-associated infections in European acute care hospitals in 2011–12 to estimate the number of non-BSIs. We developed disease outcome models for five types of infection on the basis of systematic reviews of the literature. Findings: From EARS-Net data collected between Jan 1, 2015, and Dec 31, 2015, we estimated 671 689 (95% uncertainty interval [UI] 583 148–763 966) infections with antibiotic-resistant bacteria, of which 63·5% (426 277 of 671 689) were associated with health care. These infections accounted for an estimated 33 110 (28 480–38 430) attributable deaths and 874 541 (768 837–989 068) DALYs. The burden for the EU and EEA was highest in infants (aged <1 year) and people aged 65 years or older, had increased since 2007, and was highest in Italy and Greece. Interpretation: Our results present the health burden of five types of infection with antibiotic-resistant bacteria expressed, for the first time, in DALYs. The estimated burden of infections with antibiotic-resistant bacteria in the EU and EEA is substantial compared with that of other infectious diseases, and has increased since 2007. Our burden estimates provide useful information for public health decision-makers prioritising interventions for infectious diseases

    The Triggering Receptor Expressed on Myeloid Cells 2 Inhibits Complement Component 1q Effector Mechanisms and Exerts Detrimental Effects during Pneumococcal Pneumonia

    Get PDF
    Phagocytosis and inflammation within the lungs is crucial for host defense during bacterial pneumonia. Triggering receptor expressed on myeloid cells (TREM)-2 was proposed to negatively regulate TLR-mediated responses and enhance phagocytosis by macrophages, but the role of TREM-2 in respiratory tract infections is unknown. Here, we established the presence of TREM-2 on alveolar macrophages (AM) and explored the function of TREM-2 in the innate immune response to pneumococcal infection in vivo. Unexpectedly, we found Trem-2(-/-) AM to display augmented bacterial phagocytosis in vitro and in vivo compared to WT AM. Mechanistically, we detected that in the absence of TREM-2, pulmonary macrophages selectively produced elevated complement component 1q (C1q) levels. We found that these increased C1q levels depended on peroxisome proliferator-activated receptor-ÎŽ (PPAR-ÎŽ) activity and were responsible for the enhanced phagocytosis of bacteria. Upon infection with S. pneumoniae, Trem-2(-/-) mice exhibited an augmented bacterial clearance from lungs, decreased bacteremia and improved survival compared to their WT counterparts. This work is the first to disclose a role for TREM-2 in clinically relevant respiratory tract infections and demonstrates a previously unknown link between TREM-2 and opsonin production within the lungs

    BMI1, ALDH1A1, and CD133 Transcripts Connect Epithelial-Mesenchymal Transition to Cancer Stem Cells in Lung Carcinoma

    No full text
    Epithelial-mesenchymal transition (EMT) is the underlying mechanism of tumor invasion and metastasis. Evidences from lung cancer cellular models show EMT can trigger conversion to a cancer stem cell (CSC) phenotype. In this study, we assessed mRNA expression levels of EMT-inducing transcription factors (BMI1, TWIST1), CSC (CD133, ALDH1A1), and epithelial (EpCAM) markers in primary tumor and whole blood samples obtained from 57 patients with operable non-small-cell lung cancer (NSCLC) as well as in circulating tumor cells (CTCs) of 13 patients with metastatic disease; then possible associations between marker expressions were evaluated. In primary tumors as well as in whole blood, correlations between BMI1 and ALDH1A1 and between BMI1 and CD133 mRNA expressions were identified. No correlations between TWIST1 and CSC markers were observed. BMI1 mRNA expression in tumors positively correlated with BMI1 mRNA expression in blood. The immunohistochemical analysis confirmed coexpression of BMI1 and CSC markers in tumors. Gene expression profiling in CTCs revealed upregulated expression of EMT/CSC markers in CTCs. Our results suggest CSCs are present in both, tumor tissue and blood of NSCLC patients, whereas Bmi1 may play an important role in initiation and maintenance of CSCs and might be involved in the blood-borne dissemination of NSCLC

    Transcription factors gene expression in chronic rhinosinusitis with and without nasal polyps

    No full text
    Chronic rhinosinusitis (CRS) current therapeutic approaches still fail in some patients with severe persistent symptoms and recurrences after surgery. We aimed to evaluate the master transcription factors gene expression levels of T cell subtypes in chronic rhinosinusitis with nasal polyps (CRSwNP) and chronic rhinosinusitis without nasal polyps (CRSsNP) that could represent new, up-stream targets for topical DNAzyme treatment

    Journal of Investigative Dermatology / Lineage Identity and Location within the Dermis Determine the Function of Papillary and Reticular Fibroblasts in Human Skin

    No full text
    Human skin dermis is composed of the superficial papillary dermis and the reticular dermis in the lower layers, which can easily be distinguished histologically. In vitro analyses of fibroblasts from explant cultures from superficial and lower dermal layers suggest that human skin comprises at least two fibroblast lineages with distinct morphology, expression profiles, and functions. However, while for mouse skin cell surface markers have been identified, allowing the isolation of pure populations of one lineage or the other via FACS, this has not been achieved for human skin fibroblasts. We have now discovered two cell surface markers that discriminate between papillary and reticular fibroblasts. While FAPCD90 cells display increased proliferative potential, express PDPN and NTN1, and cannot be differentiated into adipocytes, FAPCD90 fibroblasts express high levels of ACTA2, MGP, PPAR, and CD36 and readily undergo adipogenic differentiation, a hallmark of reticular fibroblasts. Flow cytometric analysis of fibroblasts isolated from superficial and lower layers of human dermis showed that FAPCD90 cells are enriched in the papillary dermis. Altogether, functional analysis and expression profiling confirms that FAPCD90 cells represent papillary fibroblasts, whereas FAPCD90 fibroblasts derive from the reticular lineage. Although papillary and reticular fibroblasts are enriched in the upper or lower dermis, respectively, they are not spatially restricted, and the microenvironment seems to affect their function.(VLID)490407

    The impact of anaemia on treatment outcome in patients with squamous cell carcinoma of anal canal and anal margin

    No full text
    Radiochemotherapy is the main treatment for patients with squamous cell carcinoma of the anal canal. Anaemia is reported to have adverse effect on survival in cancer patients. The aim of the study was to evaluate the influence of anaemia on radiochemotherapy treatment outcome in patients with squamous cell carcinoma of the anal canal

    Specific roles for dendritic cell subsets during initiation and progression of psoriasis

    No full text
    Abstract Several subtypes of APCs are found in psoriasis patients, but their involvement in disease pathogenesis is poorly understood. Here, we investigated the contribution of Langerhans cells (LCs) and plasmacytoid DCs (pDCs) in psoriasis. In human psoriatic lesions and in a psoriasis mouse model (DKO* mice), LCs are severely reduced, whereas pDCs are increased. Depletion of pDCs in DKO* mice prior to psoriasis induction resulted in a milder phenotype, whereas depletion during active disease had no effect. In contrast, while depletion of Langerin‐expressing APCs before disease onset had no effect, depletion from diseased mice aggravated psoriasis symptoms. Disease aggravation was due to the absence of LCs, but not other Langerin‐expressing APCs. LCs derived from DKO* mice produced increased IL‐10 levels, suggesting an immunosuppressive function. Moreover, IL‐23 production was high in psoriatic mice and further increased in the absence of LCs. Conversely, pDC depletion resulted in reduced IL‐23 production, and therapeutic inhibition of IL‐23R signaling ameliorated disease symptoms. Therefore, LCs have an anti‐inflammatory role during active psoriatic disease, while pDCs exert an instigatory function during disease initiation

    Type I interferon promotes alveolar epithelial type II cell survival during pulmonary Streptococcus pneumoniae infection and sterile lung injury in mice.

    Get PDF
    Protecting the integrity of the lung epithelial barrier is essential to ensure respiration and proper oxygenation in patients suffering from various types of lung inflammation. Type I interferon (IFN-I) has been associated with pulmonary epithelial barrier function, however, the mechanisms and involved cell types remain unknown. We aimed to investigate the importance of IFN-I with respect to its epithelial barrier strengthening function to better understand immune-modulating effects in the lung with potential medical implications. Using a mouse model of pneumococcal pneumonia, we revealed that IFN-I selectively protects alveolar epithelial type II cells (AECII) from inflammation-induced cell death. Mechanistically, signaling via the IFN-I receptor on AECII is sufficient to promote AECII survival. The net effects of IFN-I are barrier protection, together with diminished tissue damage, inflammation, and bacterial loads. Importantly, we found that the protective role of IFN-I can also apply to sterile acute lung injury, in which loss of IFN-I signaling leads to a significant reduction in barrier function caused by AECII cell death. Our data suggest that IFN-I is an important mediator in lung inflammation that plays a protective role by antagonizing inflammation-associated cell obstruction, thereby strengthening the integrity of the epithelial barrier

    First-Breath-Induced Type 2 Pathways Shape the Lung Immune Environment

    No full text
    From birth onward, the lungs are exposed to the external environment and therefore harbor a complex immunological milieu to protect this organ from damage and infection. We investigated the homeostatic role of the epithelium-derived alarmin interleukin-33 (IL-33) in newborn mice and discovered the immediate upregulation of IL-33 from the first day of life, closely followed by a wave of IL-13producing type 2 innate lymphoid cells (ILC2s), which coincided with the appearance of alveolar macrophages (AMs) and their early polarization to an IL-13-dependent anti-inflammatory M2 phenotype. ILC2s contributed to lung quiescence in homeostasis by polarizing tissue resident AMs and induced an M2 phenotype in transplanted macrophage progenitors. ILC2s continued to maintain the M2 AM phenotype during adult life at the cost of a delayed response to Streptococcus pneumoniae infection in mice. These data highlight the homeostatic role of ILC2s in setting the activation threshold in the lung and underline their implications in anti-bacterial defenses.(VLID)456113

    Non-parenchymal TREM-2 protects the liver from immune-mediated hepatocellular damage

    No full text
    Objective: Liver injury impacts hepatic inflammation in part via Toll-like receptor (TLR) signalling. Triggering receptor expressed on myeloid cells 2 (TREM-2) modulates TLR4-mediated inflammation in bone marrow (BM)-derived macrophages but its function in liver injury is unknown. Here we hypothesised that the anti-inflammatory effects of TREM-2 on TLR signalling may limit hepatic injury. Design: TREM-2 expression was analysed in livers of humans with various forms of liver injury compared with control individuals. Acute and chronic liver injury models were performed in wild type and Trem-2-/- mice. Primary liver cells from both genotypes of mice were isolated for in vitro experiments. Results: TREM-2 was expressed on non-parenchymal hepatic cells and induced during liver injury in mice and man. Mice lacking TREM-2 exhibited heightened liver damage and inflammation during acute and repetitive carbon tetrachloride and acetaminophen (APAP) intoxication, the latter of which TREM-2 deficiency was remarkably associated with worsened survival. Liver damage in Trem-2-/- mice following chronic injury and APAP challenge was associated with elevated hepatic lipid peroxidation and macrophage content. BM transplantation experiments and cellular reactive oxygen species assays revealed effects of TREM-2 in the context of chronic injury depended on both immune and resident TREM-2 expression. Consistent with effects of TREM-2 on inflammation-associated injury, primary hepatic macrophages and hepatic stellate cells lacking TREM-2 exhibited augmented TLR4-driven proinflammatory responses. Conclusion: Our data indicate that by acting as a natural brake on inflammation during hepatocellular injury, TREM-2 is a critical regulator of diverse types of hepatotoxic injury
    corecore