186 research outputs found
X-Ray Microanalysis of Calcium Containing Organelles in Resin Embedded Tissue
The localization of calcium in cell organelles at the electron microscope level is often achieved through cytochemical techniques, and verified by X-ray microanalysis. Various methods have been used to cytochemically detect calcium or calcium-binding sites : calcium loading, calcium substitution by strontium, barium, or even lead, and calcium precipitation by oxalate, phosphate, fluoride, or pyroantimonate. Their results may have heuristic value, particularly in preliminary studies of poorly known cell types. A complementary and more physiological approach is offered by quantitative measurement of the total calcium content of organelles after cryofixation.
Resin embedding is less demanding than cryomicrotomy and gives better images : it can be used after cryosubstitution in the presence of oxalic acid. This technique was tested, and applied to several cell types
Phylogeography of an endangered disjunct herb: long-distance dispersal, refugia and colonization routes
Quaternary glacial cycles appear to have had a consistent role in shaping the genetic diversity and
structure of plant species. Despite the unusual combination of the characteristics of the western Mediterraneanâ
Macaronesian area, there are no studies that have specifically examined the effects of palaeoclimatic and palaeogeographic
factors on the genetic composition and structure of annual herbs. Astragalus edulis is a disjunct endemic
found in the easternmost Canary Islands and the semi-arid areas of north-eastern Africa and south-eastern Iberian
Peninsula. This endangered species shows no evident adaptations to long-distance dispersal. Amplified fragment
length polymorphism (AFLP) data and plastid DNA sequences were analysed from a total of 360 individuals distributed
throughout the range of this species. The modelled potential distribution of A. edulis under current conditions
was projected over the climatic conditions of the Last Interglacial (130 ka BP) and Last Glacial Maximum (21
ka BP) to analyse changes in habitat suitability and to look for associations between the modelling and genetic
results. Amplified fragment length polymorphism analysis showed clear phylogeographic structure with four distinct
genetic clusters. Approximate Bayesian computation (ABC) models based on plastid DNA sequences indicated a
Middle Pleistocene long-distance dispersal event as the origin of the populations of the Canary Islands. The models
also suggested south-western Morocco as the ancestral area for the species, as well as subsequent colonization of
north-eastern Morocco and the Iberian Peninsula. The data compiled indicated the possibility of the presence of refuge
areas at favourable locations around the High Atlas and Anti-Atlas mountain ranges. Moreover, palaeodistribution
models strongly support the events inferred by ABC modelling and show the potential distribution of the species
in the past, suggesting a putative colonization route.This work has been financed by the Spanish Ministerio
de Ciencia e InnovaciĂłn through the projects CGL2012-
32574 and REN2003-09427, as well as by the Andalusian
ConsejerĂa de InnovaciĂłn, Ciencia y TecnologĂa through
the project RNM1067. The funders had no role in study
design, data collection and analysis, decision to publish
or preparation of the manuscript
No Evolutionary Shift in the Mating System of North American Ambrosia artemisiifolia (Asteraceae) Following Its Introduction to China
The mating system plays a key role during the process of plant invasion. Contemporary evolution of uniparental reproduction (selfing or asexuality) can relieve the challenges of mate limitation in colonizing populations by providing reproductive assurance. Here we examined aspects of the genetics of colonization in Ambrosia artemisiifolia, a North American native that is invasive in China. This species has been found to possess a strong self-incompatibility system and have high outcrossing rates in North America and we examined whether there has been an evolutionary shift towards the dependence on selfing in the introduced range. Specifically, we estimated outcrossing rates in one native and five invasive populations and compared levels of genetic diversity between North America and China. Based on six microsatellite loci we found that, like the native North American population, all five Chinese populations possessed a completely outcrossing mating system. The estimates of paternity correlations were low, ranging from 0.028â0.122, which suggests that populations possessed âź8â36 pollen donor parents contributing to each maternal plant in the invasive populations. High levels of genetic diversity for both native and invasive populations were found with the unbiased estimate of gene diversity ranging from 0.262â0.289 for both geographic ranges based on AFLP markers. Our results demonstrate that there has been no evolutionary shift from outcrossing to selfing during A. artemisiifolia's invasion of China. Furthermore, high levels of genetic variation in North America and China indicate that there has been no erosion of genetic variance due to a bottleneck during the introduction process. We suggest that the successful invasion of A. artemisiifolia into Asia was facilitated by repeated introductions from multiple source populations in the native range creating a diverse gene pool within Chinese populations
CNTN6 mutations are risk factors for abnormal auditory sensory perception in autism spectrum disorders
Contactin genes CNTN5 and CNTN6 code for neuronal cell adhesion molecules that promote neurite outgrowth in sensory-motor neuronal pathways. Mutations of CNTN5 and CNTN6 have previously been reported in individuals with autism spectrum disorders (ASDs), but very little is known on their prevalence and clinical impact. In this study, we identified CNTN5 and CNTN6 deleterious variants in individuals with ASD. Among the carriers, a girl with ASD and attention-deficit/hyperactivity disorder was carrying five copies of CNTN5. For CNTN6, both deletions (6/1534 ASD vs 1/8936 controls; P=0.00006) and private coding sequence variants (18/501 ASD vs 535/33480 controls; P=0.0005) were enriched in individuals with ASD. Among the rare CNTN6 variants, two deletions were transmitted by fathers diagnosed with ASD, one stop mutation CNTN6W923X was transmitted by a mother to her two sons with ASD and one variant CNTN6P770L was found de novo in a boy with ASD. Clinical investigations of the patients carrying CNTN5 or CNTN6 variants showed that they were hypersensitive to sounds (a condition called hyperacusis) and displayed changes in wave latency within the auditory pathway. These results reinforce the hypothesis of abnormal neuronal connectivity in the pathophysiology of ASD and shed new light on the genes that increase risk for abnormal sensory perception in ASD
Genomic characterization of five deletions in the LDL receptor gene in Danish Familial Hypercholesterolemic subjects
BACKGROUND: Familial Hypercholesterolemia is a common autosomal dominantly inherited disease that is most frequently caused by mutations in the gene encoding the receptor for low density lipoproteins (LDLR). Deletions and other major structural rearrangements of the LDLR gene account for approximately 5% of the mutations in many populations. METHODS: Five genomic deletions in the LDLR gene were characterized by amplification of mutated alleles and sequencing to identify genomic breakpoints. A diagnostic assay based on duplex PCR for the exon 7 â 8 deletion was developed to discriminate between heterozygotes and normals, and bioinformatic analyses were used to identify interspersed repeats flanking the deletions. RESULTS: In one case 15 bp had been inserted at the site of the deleted DNA, and, in all five cases, Alu elements flanked the sites where deletions had occurred. An assay developed to discriminate the wildtype and the deletion allele in a simple duplex PCR detected three FH patients as heterozygotes, and two individuals with normal lipid values were detected as normal homozygotes. CONCLUSION: The identification of the breakpoints should make it possible to develop specific tests for these mutations, and the data provide further evidence for the role of Alu repeats in intragenic deletions
ESUR prostate MR guidelines 2012
The aim was to develop clinical guidelines for multi-parametric MRI of the prostate by a group of prostate MRI experts from the European Society of Urogenital Radiology (ESUR), based on literature evidence and consensus expert opinion. True evidence-based guidelines could not be formulated, but a compromise, reflected by âminimalâ and âoptimalâ requirements has been made. The scope of these ESUR guidelines is to promulgate high quality MRI in acquisition and evaluation with the correct indications for prostate cancer across the whole of Europe and eventually outside Europe. The guidelines for the optimal technique and three protocols for âdetectionâ, âstagingâ and ânode and boneâ are presented. The use of endorectal coil vs. pelvic phased array coil and 1.5 vs. 3Â T is discussed. Clinical indications and a PI-RADS classification for structured reporting are presented
Stable interference of EWSâFLI1 in an Ewing sarcoma cell line impairs IGF-1/IGF-1R signalling and reveals TOPK as a new target
BACKGROUND: Ewing sarcoma is a paradigm of solid tumour -bearing chromosomal translocations resulting in fusion proteins that act as deregulated transcription factors. Ewing sarcoma translocations fuse the EWS gene with an ETS transcription factor, mainly FLI1. Most of the EWSâFLI1 target genes still remain unknown and many have been identified in heterologous model systems
Accurate molecular classification of cancer using simple rules
<p>Abstract</p> <p>Background</p> <p>One intractable problem with using microarray data analysis for cancer classification is how to reduce the extremely high-dimensionality gene feature data to remove the effects of noise. Feature selection is often used to address this problem by selecting informative genes from among thousands or tens of thousands of genes. However, most of the existing methods of microarray-based cancer classification utilize too many genes to achieve accurate classification, which often hampers the interpretability of the models. For a better understanding of the classification results, it is desirable to develop simpler rule-based models with as few marker genes as possible.</p> <p>Methods</p> <p>We screened a small number of informative single genes and gene pairs on the basis of their depended degrees proposed in rough sets. Applying the decision rules induced by the selected genes or gene pairs, we constructed cancer classifiers. We tested the efficacy of the classifiers by leave-one-out cross-validation (LOOCV) of training sets and classification of independent test sets.</p> <p>Results</p> <p>We applied our methods to five cancerous gene expression datasets: leukemia (acute lymphoblastic leukemia [ALL] vs. acute myeloid leukemia [AML]), lung cancer, prostate cancer, breast cancer, and leukemia (ALL vs. mixed-lineage leukemia [MLL] vs. AML). Accurate classification outcomes were obtained by utilizing just one or two genes. Some genes that correlated closely with the pathogenesis of relevant cancers were identified. In terms of both classification performance and algorithm simplicity, our approach outperformed or at least matched existing methods.</p> <p>Conclusion</p> <p>In cancerous gene expression datasets, a small number of genes, even one or two if selected correctly, is capable of achieving an ideal cancer classification effect. This finding also means that very simple rules may perform well for cancerous class prediction.</p
On the origin of the invasive olives (Olea europaea L., Oleaceae).
The olive tree (Olea europaea) has successfully invaded several regions in Australia and Pacific islands. Two olive subspecies (subspp. europaea and cuspidata) were first introduced in these areas during the nineteenth century. In the present study, we determine the origin of invasive olives and investigate the importance of historical effects on the genetic diversity of populations. Four invasive populations from Australia and Hawaii were characterized using eight nuclear DNA microsatellites, plastid DNA markers as well as ITS-1 sequences. Based on these data, their genetic similarity with native populations was investigated, and it was determined that East Australian and Hawaiian populations (subsp. cuspidata) have originated from southern Africa while South Australian populations (subsp. europaea) have mostly derived from western or central Mediterranean cultivars. Invasive populations of subsp. cuspidata showed significant loss of genetic diversity in comparison to a putative source population, and a recent bottleneck was evidenced in Hawaii. Conversely, invasive populations of subsp. europaea did not display significant loss of genetic diversity in comparison to a native Mediterranean population. Different histories of invasion were inferred for these two taxa with multiple cultivars introduced restoring gene diversity for europaea and a single successful founder event and sequential introductions to East Australia and then Hawaii for cuspidata. Furthermore, one hybrid (cuspidata x europaea) was identified in East Australia. The importance of hybridizations in the future evolution of the olive invasiveness remains to be investigated
Microsatellite and Mitochondrial Data Provide Evidence for a Single Major Introduction for the Neartic Leafhopper Scaphoideus titanus in Europe
Scaphoideus titanus, a leafhopper native to North America and invasive in Europe, is the vector of the Flavescence dorĂŠe phytoplasma, the causal agent of the most important form of grapevine yellows in European vineyards. We studied 10 polymorphic microsatellite loci and a 623 bp fragment of the mitochondrial cytochrome oxidase II gene in native S. titanus from north-eastern America and introduced European populations, to elucidate the colonization scenario. Consistent with their recent history, invasive European populations were less genetically diverse than American populations for both types of markers, suggesting a recent bottleneck. Significant isolation by distance was detected between American populations but not between European populations. None of the European mitochondrial haplotypes was found in the American vineyards, from which they are assumed to have originated. The precise source of the invasive S. titanus populations therefore remains unclear. Nevertheless, the high heterozygosity of North-East American populations (which contained 92% of the observed alleles) suggests that this region is part of the native range of S. titanus. Clustering population genetics analyses with microsatellite and mitochondrial data suggested that European populations originated from a single introduction event. Most of the introduced populations clustered with populations from Long Island, the Atlantic Coast winegrowing region in which Vitis aestivalis occurs
- âŚ