5 research outputs found
Complete Design and Finite Element Analysis of an all Terrain Vehicle
We have tried to design an all terrain vehicle that meets international standards and is also cost effective at the same time. We have focused on every single system to improve the performance of each component. Our vehicle can navigate through almost all terrain, which ultimately is the objective behind the making of any all terrain vehicle. We began the task of designing by conducting extensive research of each main component of the vehicle. We did not want to design certain areas such as the frame, and then make the rest to fit. We considered each component to be significant, and thereby designed the vehicle as a whole trying to optimize each component while constantly considering how other components would be affected. This forced us to think outside the box, research more thoroughly, and redesign components along the way in order to have a successful design. We used the necessary parameters to create a Qualitative Function Diagram (QFD) to determine which parameters were the most critical. These key parameters ranging from most critical to least critical are safety, reliability, low cost, ease of operation and maintenance, and overall performance
Global injury morbidity and mortality from 1990 to 2017 : results from the Global Burden of Disease Study 2017
Correction:Background Past research in population health trends has shown that injuries form a substantial burden of population health loss. Regular updates to injury burden assessments are critical. We report Global Burden of Disease (GBD) 2017 Study estimates on morbidity and mortality for all injuries. Methods We reviewed results for injuries from the GBD 2017 study. GBD 2017 measured injury-specific mortality and years of life lost (YLLs) using the Cause of Death Ensemble model. To measure non-fatal injuries, GBD 2017 modelled injury-specific incidence and converted this to prevalence and years lived with disability (YLDs). YLLs and YLDs were summed to calculate disability-adjusted life years (DALYs). Findings In 1990, there were 4 260 493 (4 085 700 to 4 396 138) injury deaths, which increased to 4 484 722 (4 332 010 to 4 585 554) deaths in 2017, while age-standardised mortality decreased from 1079 (1073 to 1086) to 738 (730 to 745) per 100 000. In 1990, there were 354 064 302 (95% uncertainty interval: 338 174 876 to 371 610 802) new cases of injury globally, which increased to 520 710 288 (493 430 247 to 547 988 635) new cases in 2017. During this time, age-standardised incidence decreased non-significantly from 6824 (6534 to 7147) to 6763 (6412 to 7118) per 100 000. Between 1990 and 2017, age-standardised DALYs decreased from 4947 (4655 to 5233) per 100 000 to 3267 (3058 to 3505). Interpretation Injuries are an important cause of health loss globally, though mortality has declined between 1990 and 2017. Future research in injury burden should focus on prevention in high-burden populations, improving data collection and ensuring access to medical care.Peer reviewe
Holistic Modeling, Design & Analysis of Integrated Stirling and Auxiliary Clean Energy Systems for Combined Heat and Power Applications
Thesis (Master's)--University of Washington, 2015The research revolves around the development of a model to design and analyze Stirling systems. Lack of a standard approach to study Stirling systems and difficulty in generalizing existing approaches pose stiff challenges. A stable mathematical model (integrated second order adiabatic and dynamic model) is devised and validated for general use. The research attempts to design compact combined heat and power (CHP) system to run on multiple biomass fuels and solar energy. Analysis is also carried out regarding the design of suitable auxiliary systems like thermal energy storage system, biomass moisture removal system and Fresnel solar collector for the CHP Stirling system
Design and Analysis of Biomass Drying unit with Waste Heat Recovery and Storage
AbstractMoisture content in the biomass causes reduction in efficiency of the power generation in biomass power plant. Removal of this moisture is been biggest challenge during monsoon and winter. This paper deals with method of reduction of moisture in minimum time by using waste heat recovery. Warm bed with PCM material is continuously heated by exhaust flue gas, this warm bed used as moisture removal system. Analysis of system with various PCM materials were carried by creating geometry using Gambit and simulated results obtained using Fluent