43 research outputs found

    Milk: an epigenetic amplifier of FTO-mediated transcription? Implications for Western diseases

    Full text link

    MicroRNA-214 Promotes Myogenic Differentiation by Facilitating Exit from Mitosis via Down-regulation of Proto-oncogene N-ras*

    No full text
    Vertebrate muscle differentiation is coordinated by an intricate network of transcription factors requiring proliferating myogenic precursors to withdraw irreversibly from the cell cycle. Recent studies have implicated a large number of microRNAs exerting another layer of control in many aspects of muscle differentiation. By annealing to short recognition sequences in the 3′-untranslated region, microRNAs attenuate target gene expression through translation repression or mRNA degradation. Here, we show that miR-214 promotes myogenic differentiation in mouse C2C12 myoblasts at a step preceding the induction of p21 and myogenin. Blocking miR-214 function with a 2′-O-methylated double-stranded inhibitor maintained C2C12 cells in the active cell cycle, thereby inhibiting the myogenic differentiation. By global gene expression profiling, we identified the proto-oncogene N-ras as one of miR-214 targets. Furthermore, manipulating the N-Ras level with small interfering RNA or adenovirus-mediated forced expression either augmented or attenuated the effect of miR-214, respectively. Thus, our data uncovered a novel microRNA-mediated mechanism that controls myogenic differentiation

    High-Resolution Profiling and Analysis of Viral and Host Small RNAs during Human Cytomegalovirus Infection

    No full text
    Human cytomegalovirus (HCMV) contributes its own set of microRNAs (miRNAs) during lytic infection of cells, likely fine-tuning conditions important for viral replication. To enhance our understanding of this component of the HCMV-host transcriptome, we have conducted deep-sequencing analysis of small RNAs (smRNA-seq) from infected human fibroblast cells. We found that HCMV-encoded miRNAs accumulate to ∼20% of the total smRNA population at late stages of infection, and our analysis led to improvements in viral miRNA annotations and identification of two novel HCMV miRNAs, miR-US22 and miR-US33as. Both of these miRNAs were capable of functionally repressing synthetic targets in transient transfection experiments. Additionally, through cross-linking and immunoprecipitation (CLIP) of Argonaute (Ago)-bound RNAs from infected cells, followed by high-throughput sequencing, we have obtained direct evidence for incorporation of all HCMV miRNAs into the endogenous host silencing machinery. Surprisingly, three HCMV miRNA precursors exhibited differential incorporation of their mature miRNA arms between Ago2 and Ago1 complexes. Host miRNA abundances were also affected by HCMV infection, with significant upregulation observed for an miRNA cluster containing miR-96, miR-182, and miR-183. In addition to miRNAs, we also identified novel forms of virus-derived smRNAs, revealing greater complexity within the smRNA population during HCMV infection
    corecore