186 research outputs found
An Uncommon Cause of Acute Bowel Obstruction: The Left Para.Duodenal Hernia
Internal hernias of the abdomen are uncommon. They represent less than 1% of bowel obstruction cases. The left Paraduodenal hernia (PH) is the most frequent type of internal hernias. We report a case of 77 year- old woman consulting for bowel obstruction evolving since two days. The abdominal computed tomography revealed a retroperitoneal small bowel contained in a peritoneal sac. The surgical exploration confirmed the diagnosis of a left internal PH by showing incarcerated jejunal loops in a PH through a narrow opening to the left of the angle of Treitz. A surgical reduction of the hernia and closure of the hernia neck were performed. The follow-ups were uncomplicated. Through this observation and a literature review, we try to recall the clinical and radiological characteristics of this disease and toclarify the therapeutic modalities.Keywords: Computed tomography, internal hernia, paraduodenal hernia, small bowel obstructio
A stochastic automaton shows how enzyme assemblies may contribute to metabolic efficiency
<p>Abstract</p> <p>Background</p> <p>The advantages of grouping enzymes into metabolons and into higher order structures have long been debated. To quantify these advantages, we have developed a stochastic automaton that allows experiments to be performed in a virtual bacterium with both a membrane and a cytoplasm. We have investigated the general case of transport and metabolism as inspired by the phosphoenolpyruvate:sugar phosphotransferase system (PTS) for glucose importation and by glycolysis.</p> <p>Results</p> <p>We show that PTS and glycolytic metabolons can increase production of pyruvate eightfold at low concentrations of phosphoenolpyruvate. A fourfold increase in the numbers of enzyme EI led to a 40% increase in pyruvate production, similar to that observed <it>in vivo </it>in the presence of glucose. Although little improvement resulted from the assembly of metabolons into a hyperstructure, such assembly can generate gradients of metabolites and signaling molecules.</p> <p>Conclusion</p> <p><it>in silico </it>experiments may be performed successfully using stochastic automata such as HSIM (Hyperstructure Simulator) to help answer fundamental questions in metabolism about the properties of molecular assemblies and to devise strategies to modify such assemblies for biotechnological ends.</p
The smectic order of wrinkles
A thin elastic sheet lying on a soft substrate develops wrinkled patterns when subject to an external forcing or as a result of geometric incompatibility. Thin sheet elasticity and substrate response equip such wrinkles with a global preferred wrinkle spacing length and with resistance to wrinkle curvature. These features are responsible for the liquid crystalline smectic-like behaviour of such systems at intermediate length scales. This insight allows better understanding of the wrinkling patterns seen in such systems, with which we explain pattern breaking into domains, the properties of domain walls and wrinkle undulation. We compare our predictions with numerical simulations and with experimental observations
The Universal One-Loop Effective Action
We present the universal one-loop effective action for all operators of
dimension up to six obtained by integrating out massive, non-degenerate
multiplets. Our general expression may be applied to loops of heavy fermions or
bosons, and has been checked against partial results available in the
literature. The broad applicability of this approach simplifies one-loop
matching from an ultraviolet model to a lower-energy effective field theory
(EFT), a procedure which is now reduced to the evaluation of a combination of
matrices in our universal expression, without any loop integrals to evaluate.
We illustrate the relationship of our results to the Standard Model (SM) EFT,
using as an example the supersymmetric stop and sbottom squark Lagrangian and
extracting from our universal expression the Wilson coefficients of
dimension-six operators composed of SM fields.Comment: 30 pages, v2 contains additional comments and corrects typos, version
accepted for publication in JHE
Mechanical effects of left ventricular midwall fibrosis in non-ischemic cardiomyopathy
Background: Left ventricular (LV) mid-wall fibrosis (MWF), which occurs in about a quarter of patients with non-ischemic cardiomyopathy (NICM), is associated with high risk of pump failure. The mid LV wall is the site of circumferential myocardial fibers. We sought to determine the effect of MWF on LV myocardial mechanics. Methods: Patients with NICM (n = 116; age: 62.8 ± 13.2 years; 67 % male) underwent late gadolinium enhancement cardiovascular magnetic resonance (CMR) and were categorized according to the presence (+) or absence (-) of MWF. Feature tracking (FT) CMR was used to assess myocardial deformation. Results: Despite a similar LVEF (24.3 vs 27.5 %, p = 0.20), patients with MWF (32 [24 %]) had lower global circumferential strain (εcc: -6.6 % vs -9.4 %, P = 0.004), but similar longitudinal (εll: -7.6 % vs. -9.4 %, p = 0.053) and radial (εrr: 14.6 % vs. 17.8 % p = 0.18) strain. Compared with - MWF, + MWF was associated with reduced LV systolic, circumferential strain rate (-0.38 ± 0.1 vs -0.56 ± 0.3 s-1, p = 0.005) and peak LV twist (4.65 vs. 6.31°, p = 0.004), as well as rigid LV body rotation (64 % vs 28 %, P cc: 0.34 vs. 0.46 s-1; DSRll: 0.38 vs. 0.50s-1; DSRrr: -0.55 vs. -0.75 s-1; all
Pine cone scale-inspired motile origami
Stimuli-sensitive hydrogels have received attention because of their potential applications in various fields. Stimuli-directed motion offers many practical applications, such as in drug delivery systems and actuators. Directed motion of asymmetric hydrogels has long been designed; however, few studies have investigated the motion control of symmetric hydrogels. We designed a pine cone scale-inspired movable temperature-sensitive symmetric hydrogel that contains Fe3O4. Alignment of Fe3O4 along the magnetic force is key in motion control in which Fe3O4 acts like fibers in a pine cone scale. Although a homogeneous temperature-sensitive hydrogel cannot respond to a temperature gradient, the Fe3O4-containing hydrogel demonstrates considerable bending motion. Varying degrees and directions of motion are easily facilitated by controlling the amount and alignment angle of the Fe3O4. The shape of the hydrogel layer also influences the morphological structure. This study introduced facile and low-cost methods to control various bending motions. These results can be applied to many fields of engineering, including industrial engineering.111Ysciescopu
Niche stiffness underlies the ageing of central nervous system progenitor cells.
Ageing causes a decline in tissue regeneration owing to a loss of function of adult stem cell and progenitor cell populations1. One example is the deterioration of the regenerative capacity of the widespread and abundant population of central nervous system (CNS) multipotent stem cells known as oligodendrocyte progenitor cells (OPCs)2. A relatively overlooked potential source of this loss of function is the stem cell 'niche'-a set of cell-extrinsic cues that include chemical and mechanical signals3,4. Here we show that the OPC microenvironment stiffens with age, and that this mechanical change is sufficient to cause age-related loss of function of OPCs. Using biological and synthetic scaffolds to mimic the stiffness of young brains, we find that isolated aged OPCs cultured on these scaffolds are molecularly and functionally rejuvenated. When we disrupt mechanical signalling, the proliferation and differentiation rates of OPCs are increased. We identify the mechanoresponsive ion channel PIEZO1 as a key mediator of OPC mechanical signalling. Inhibiting PIEZO1 overrides mechanical signals in vivo and allows OPCs to maintain activity in the ageing CNS. We also show that PIEZO1 is important in regulating cell number during CNS development. Thus we show that tissue stiffness is a crucial regulator of ageing in OPCs, and provide insights into how the function of adult stem and progenitor cells changes with age. Our findings could be important not only for the development of regenerative therapies, but also for understanding the ageing process itself.The work was supported by European Research Council (ERC) grant 772798 (to K.J.C.) and 772426 (to K.F.); the UK Multiple Sclerosis Society (to R.J.M.F.); Biotechnology and Biological Sciences Research Council (BBSRC) grant BB/M008827/1 (to K.J.C and R.J.M.F.) and BB/N006402/1 (to K.F.); the Adelson Medical Research Foundation (R.J.M.F. and D.H.R.); an EMBO Long-Term Fellowship ALTF 1263-2015 and European Commission FP7 actions LTFCOFUND2013, GA-2013-609409 (to I.P.W.); and a core support grant from the Wellcome Trust and Medical Research Council (MRC) to the Wellcome Trust–MRC Cambridge Stem Cell Institute
Methylphenidate Exposure Induces Dopamine Neuron Loss and Activation of Microglia in the Basal Ganglia of Mice
Background: Methylphenidate (MPH) is a psychostimulant that exerts its pharmacological effects via preferential blockade of the dopamine transporter (DAT) and the norepinephrine transporter (NET), resulting in increased monoamine levels in the synapse. Clinically, methylphenidate is prescribed for the symptomatic treatment of ADHD and narcolepsy; although lately, there has been an increased incidence of its use in individuals not meeting the criteria for these disorders. MPH has also been misused as a ‘‘cognitive enhancer’ ’ and as an alternative to other psychostimulants. Here, we investigate whether chronic or acute administration of MPH in mice at either 1 mg/kg or 10 mg/kg, affects cell number and gene expression in the basal ganglia. Methodology/Principal Findings: Through the use of stereological counting methods, we observed a significant reduction (,20%) in dopamine neuron numbers in the substantia nigra pars compacta (SNpc) following chronic administration of 10 mg/kg MPH. This dosage of MPH also induced a significant increase in the number of activated microglia in the SNpc. Additionally, exposure to either 1 mg/kg or 10 mg/kg MPH increased the sensitivity of SNpc dopaminergic neurons to the parkinsonian agent 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Unbiased gene screening employing Affymetrix GeneChipH HT MG-430 PM revealed changes in 115 and 54 genes in the substantia nigra (SN) of mice exposed to 1 mg/kg and 10 mg/kg MPH doses, respectively. Decreases in the mRNA levels of gdnf, dat1, vmat2, and th in the substantia nigr
Computing with bacterial constituents, cells and populations: from bioputing to bactoputing
The relevance of biological materials and processes to computing—aliasbioputing—has been explored for decades. These materials include DNA, RNA and proteins, while the processes include transcription, translation, signal transduction and regulation. Recently, the use of bacteria themselves as living computers has been explored but this use generally falls within the classical paradigm of computing. Computer scientists, however, have a variety of problems to which they seek solutions, while microbiologists are having new insights into the problems bacteria are solving and how they are solving them. Here, we envisage that bacteria might be used for new sorts of computing. These could be based on the capacity of bacteria to grow, move and adapt to a myriad different fickle environments both as individuals and as populations of bacteria plus bacteriophage. New principles might be based on the way that bacteria explore phenotype space via hyperstructure dynamics and the fundamental nature of the cell cycle. This computing might even extend to developing a high level language appropriate to using populations of bacteria and bacteriophage. Here, we offer a speculative tour of what we term bactoputing, namely the use of the natural behaviour of bacteria for calculating
Gut Microbiota, Probiotics and Diabetes
Diabetes is a condition of multifactorial origin, involving several molecular mechanisms related to the intestinal
microbiota for its development. In type 2 diabetes, receptor activation and recognition by microorganisms from
the intestinal lumen may trigger inflammatory responses, inducing the phosphorylation of serine residues in insulin
receptor substrate-1, reducing insulin sensitivity. In type 1 diabetes, the lowered expression of adhesion proteins
within the intestinal epithelium favours a greater immune response that may result in destruction of pancreatic
β cells by CD8+ T-lymphocytes, and increased expression of interleukin-17, related to autoimmunity. Research in
animal models and humans has hypothesized whether the administration of probiotics may improve the prognosis
of diabetes through modulation of gut microbiota. We have shown in this review that a large body of evidence
suggests probiotics reduce the inflammatory response and oxidative stress, as well as increase the expression of
adhesion proteins within the intestinal epithelium, reducing intestinal permeability. Such effects increase insulin sensitivity and reduce autoimmune response. However, further investigations are required to clarify whether the administration of probiotics can be efficiently used for the prevention and management of diabetes
- …