60 research outputs found

    Crystal structure of 1,1-dimethyl-3-(2-phenylethyl)urea, C11H16N2O

    Get PDF
    Abstract C11H16N2O, orthorhombic, Pbca (no. 61), a = 10.7388(6) Ã…, b = 9.8449(5) Ã…, c = 21.1259(14) Ã…, V = 2233.5(2) Ã…3, Z = 8, R gt (F) = 0.0582, wR ref (F 2) = 0.1795, T = 293 K.</jats:p

    Effects of ions on the characteristics of monolayer at brine/oil interfaces

    Get PDF
    The advanced waterflooding technologies through salinity and ionic content adjustment can make favorable impacts on rock wettability and oil recovery. In carbonate reservoirs, SmartWater at low ionic strength showed strong chemical interactions with carbonate minerals and oil components. As a result, several hypotheses are proposed in literature as ionic exchange, rock dissolution, surface charges and others. The applied macroscopic and microscopic technologies have certain limitations in identifying the structures at interfaces especially at monolayers. In this paper, advanced Sum Frequency Generation (SFG) spectroscopy is utilized for the first time to characterize the chemical structures of molecules at the brine/oil interfaces. Different brines recipes and model oil are tested to determine the effects of individual and combined ions on the monolayer structures. Stearic acid is also mixed with hydrocarbons to mimic the acidity condition of fluids in the reservoir. The change in the chemical structure is mo nitored with time at a broad wavenumber range from 1,000 to 3,800 cm-1. Distinct spectral signatures of oil components and water ions are detected at different pH conditions. The SFG data is compared with the previous macroscopic wettability results to predict the components that are highly affected during waterflooding and enhanced oil recovery (EOR) processes. This study brings new insights on understanding the chemical structures at the thin monolayers of flat and curved geometric at different aqueous interfaces. The measured spectra, coupled with a wide range of laser polarization settings, and signal intensity trends are discussed in terms of composition, and structure of organic and inorganic components. For example, the intensity for SmartWater at certain wavenumber is three folds higher when compared to high salinity water. This indicates that the interactions at oil/water interfaces are enhanced at lower ionic strengths. In addition, these findings are also confirmed with similar behaviors at a higher salinity brine as connate formation brine. The novelty of this interfacial study can provide better understanding of the reaction mechanisms altering the ionic strength and salinity of injection water and its impact due to the changes in geometric interfaces. Such understanding is also crucial to optimize the chemistry of injection water and its interaction with oil components and carbonate rock, to ultimately alter wettability toward water-wet

    Response of crude oil deposited organic layers to brines of different salinity:An atomic force microscopy study on carbonate surfaces

    Get PDF
    The various microscopic processes that take place during enhanced oil-recovery upon injecting low salinity brines are quite complex, particularly for carbonate reservoirs. In this study, we characterize the in-situ microscopic responses of the organic layers deposited on flat Iceland spar calcite surface to brines of different salinity using Atomic force Microscopy (AFM). Organic layers were deposited from crude oil at the end of a two-step aging procedure. AFM topography images reveal that the organic layers remain stable in high-salinity brines and desorb upon exposure to low-salinity brines. In addition, the organic layers swell in low-salinity brines, and the stiffness of the organic layers is found to directly proportional to the brine salinity. These observations are explained in terms of ‘salting-out’ effects, where the affinity of organic layers to solvent molecules increases upon reducing the brine salinity. The swelling and desorption of organic materials provide access for the brine to mineral surface causing dissolution and change in wetting properties of the surface. Our results show the significance of de-stabilizing the organic layer on rock surfaces in order to design any successful improved oil recovery (IOR) strategy

    Microscopic Characterization of Mineral Dissolution and Precipitation at Variable Salinity for Improved Oil Recovery in Carbonate Reservoirs

    Get PDF
    Aging of carbonate mineral surfaces in brines of variable salinity and crude oil leads to massive transformations of surface topography and chemical composition including the formation of mixed organic-inorganic interfacial layers. The response of these interfacial layers to variations in brine composition is responsible for local (chemical) wettability alteration and therefore becomes the main microscopic driver for improved oil recovery in low-salinity water flooding or SmartWater flooding. In this study, a new method was developed to directly visualize local nanoscale dissolution and (re)precipitation around the three-phase contact line on model calcite surfaces in the presence of crude oil and ambient brine upon aging. The sessile microscopic oil drops on calcite surfaces were exposed to brines of variable composition at room temperature (22 °C) and at elevated temperatures (95 °C) for up to 2 weeks. Brines ranged from hypersaline formation water to diluted high-salinity water, in part enriched with Mg2+ or SO42- ions. In situ optical and ex situ atomic force microscopy (AFM) imaging of the calcite surfaces was performed prior to and after aging, complemented by confocal Raman imaging. Optical images show that crude oil drops remained attached to the mineral surfaces throughout all aging procedures studied and displayed only occasional minor relaxations of their shape at elevated temperatures. Ex situ AFM images after calcite cleaning and drying displayed strong marks of the original droplet positions that appeared either as holes or as protruding mesas with respect to the surrounding surface level, with height differences up to several hundred nanometers. The sessile oil drops are thus found to protect the underlying calcite surface from both precipitation and dissolution, in overall agreement with the macroscopic calcite saturation of the brines. The qualitative trends are consistent for all conditions investigated, notwithstanding a higher degree of variability at elevated temperatures and upon preaging in oil-equilibrated formation water. In contrast to the calcite-brine interface that undergoes these massive transformations, the oil-calcite interface remains overall remarkably inert. Only at 95 °C does the occasional appearance of roundish rims accompanied by hillocks suggest the growth of water drops during aging, possibly via exchange across thin aqueous layers.</p

    Absence of anomalous underscreening in highly concentrated aqueous electrolytes confined between smooth silica surfaces

    Get PDF
    Recent surface forces apparatus experiments that measured the forces between two mica surfaces and a series of subsequent theoretical studies suggest the occurrence of universal underscreening in highly concentrated electrolyte solutions. We performed a set of systematic Atomic Force Spectroscopy measurements for aqueous salt solutions in a concentration range from 1 mM to 5 M using chloride salts of various alkali metals as well as mixed concentrated salt solutions (involving both mono- and divalent cations and anions), that mimic concentrated brines typically encountered in geological formations. Experiments were carried out using flat substrates and submicrometer-sized colloidal probes made of smooth oxidized silicon immersed in salt solutions at pH values of 6 and 9 and temperatures of 25 °C and 45 °C. While strong repulsive forces were observed for the smallest tip-sample separations, none of the conditions explored displayed any indication of anomalous long range electrostatic forces as reported for mica surfaces. Instead, forces are universally dominated by attractive van der Waals interactions at tip-sample separations of ≈2 nm and beyond for salt concentrations of 1 M and higher. Complementary calculations based on classical density functional theory for the primitive model support these experimental observations and display a consistent decrease in screening length with increasing ion concentration

    Dermatological Emergencies in Family Medicine: Recognition, Management, and Referral Considerations

    Get PDF
    Numerous people with skin disorders who have real dermatologic crises show up at the emergency room. Family doctors need to be able to identify potentially fatal dermatological disorders quickly since they could be the first to encounter patients with these illnesses. The purpose of this review is to provide guidance for early recognition, help identify distinct symptoms, and enable early diagnosis of emerging dermatological conditions. Necrotizing fasciitis, Stevens-Johnson syndrome, toxic epidermal necrolysis, Rocky Mountain spotted fever, and other possible emergencies that might manifest as dermatological symptoms are examples of these conditions. In this article we will be discussing the dermatological emergencies present at primary care settings and encountered by family physician, recognition and management of those emergencies, referral considerations, role of family medicine in dermatological emergencies and other topics

    Multidimensional Signals and Analytic Flexibility: Estimating Degrees of Freedom in Human-Speech Analyses

    Get PDF
    Recent empirical studies have highlighted the large degree of analytic flexibility in data analysis that can lead to substantially different conclusions based on the same data set. Thus, researchers have expressed their concerns that these researcher degrees of freedom might facilitate bias and can lead to claims that do not stand the test of time. Even greater flexibility is to be expected in fields in which the primary data lend themselves to a variety of possible operationalizations. The multidimensional, temporally extended nature of speech constitutes an ideal testing ground for assessing the variability in analytic approaches, which derives not only from aspects of statistical modeling but also from decisions regarding the quantification of the measured behavior. In this study, we gave the same speech-production data set to 46 teams of researchers and asked them to answer the same research question, resulting in substantial variability in reported effect sizes and their interpretation. Using Bayesian meta-analytic tools, we further found little to no evidence that the observed variability can be explained by analysts’ prior beliefs, expertise, or the perceived quality of their analyses. In light of this idiosyncratic variability, we recommend that researchers more transparently share details of their analysis, strengthen the link between theoretical construct and quantitative system, and calibrate their (un)certainty in their conclusions

    SPARC 2018 Internationalisation and collaboration : Salford postgraduate annual research conference book of abstracts

    Get PDF
    Welcome to the Book of Abstracts for the 2018 SPARC conference. This year we not only celebrate the work of our PGRs but also the launch of our Doctoral School, which makes this year’s conference extra special. Once again we have received a tremendous contribution from our postgraduate research community; with over 100 presenters, the conference truly showcases a vibrant PGR community at Salford. These abstracts provide a taster of the research strengths of their works, and provide delegates with a reference point for networking and initiating critical debate. With such wide-ranging topics being showcased, we encourage you to take up this great opportunity to engage with researchers working in different subject areas from your own. To meet global challenges, high impact research inevitably requires interdisciplinary collaboration. This is recognised by all major research funders. Therefore engaging with the work of others and forging collaborations across subject areas is an essential skill for the next generation of researchers

    Elective Cancer Surgery in COVID-19-Free Surgical Pathways During the SARS-CoV-2 Pandemic: An International, Multicenter, Comparative Cohort Study.

    Get PDF
    PURPOSE: As cancer surgery restarts after the first COVID-19 wave, health care providers urgently require data to determine where elective surgery is best performed. This study aimed to determine whether COVID-19-free surgical pathways were associated with lower postoperative pulmonary complication rates compared with hospitals with no defined pathway. PATIENTS AND METHODS: This international, multicenter cohort study included patients who underwent elective surgery for 10 solid cancer types without preoperative suspicion of SARS-CoV-2. Participating hospitals included patients from local emergence of SARS-CoV-2 until April 19, 2020. At the time of surgery, hospitals were defined as having a COVID-19-free surgical pathway (complete segregation of the operating theater, critical care, and inpatient ward areas) or no defined pathway (incomplete or no segregation, areas shared with patients with COVID-19). The primary outcome was 30-day postoperative pulmonary complications (pneumonia, acute respiratory distress syndrome, unexpected ventilation). RESULTS: Of 9,171 patients from 447 hospitals in 55 countries, 2,481 were operated on in COVID-19-free surgical pathways. Patients who underwent surgery within COVID-19-free surgical pathways were younger with fewer comorbidities than those in hospitals with no defined pathway but with similar proportions of major surgery. After adjustment, pulmonary complication rates were lower with COVID-19-free surgical pathways (2.2% v 4.9%; adjusted odds ratio [aOR], 0.62; 95% CI, 0.44 to 0.86). This was consistent in sensitivity analyses for low-risk patients (American Society of Anesthesiologists grade 1/2), propensity score-matched models, and patients with negative SARS-CoV-2 preoperative tests. The postoperative SARS-CoV-2 infection rate was also lower in COVID-19-free surgical pathways (2.1% v 3.6%; aOR, 0.53; 95% CI, 0.36 to 0.76). CONCLUSION: Within available resources, dedicated COVID-19-free surgical pathways should be established to provide safe elective cancer surgery during current and before future SARS-CoV-2 outbreaks
    • …
    corecore