37 research outputs found

    Giant Planet Occurrence in the Stellar Mass-Metallicity Plane

    Get PDF
    Correlations between stellar properties and the occurrence rate of exoplanets can be used to inform the target selection of future planet search efforts and provide valuable clues about the planet formation process. We analyze a sample of 1194 stars drawn from the California Planet Survey targets to determine the empirical functional form describing the likelihood of a star harboring a giant planet as a function of its mass and metallicity. Our stellar sample ranges from M dwarfs with masses as low as 0.2 Msun to intermediate-mass subgiants with masses as high as 1.9 Msun. In agreement with previous studies, our sample exhibits a planet-metallicity correlation at all stellar masses; the fraction of stars that harbor giant planets scales as f \propto 10^{1.2 [Fe/H]}. We can rule out a flat metallicity relationship among our evolved stars (at 98% confidence), which argues that the high metallicities of stars with planets are not likely due to convective envelope "pollution." Our data also rule out a constant planet occurrence rate for [Fe/H]< 0, indicating that giant planets continue to become rarer at sub-Solar metallicities. We also find that planet occurrence increases with stellar mass (f \propto Mstar), characterized by a rise from 3.5% around M dwarfs (0.5 Msun) to 14% around A stars (2 Msun), at Solar metallicity. We argue that the correlation between stellar properties and giant planet occurrence is strong supporting evidence of the core accretion model of planet formation.Comment: Fixed minor typos, modified the last paragraph of Section

    Early Results from VLT-SPHERE: Long-Slit Spectroscopy of 2MASS 0122-2439B, a Young Companion Near the Deuterium Burning Limit

    Get PDF
    We present 0.95-1.80 μ\mum spectroscopy of the \sim12-27 MJupM_{\rm Jup} companion orbiting the faint (RR\sim13.6), young (\sim120 Myr) M-dwarf 2MASS J01225093--2439505 ("2M0122--2439 B") at 1.5 arcsecond separation (50 AU). Our coronagraphic long-slit spectroscopy was obtained with the new high contrast imaging platform VLT-SPHERE during Science Verification. The unique long-slit capability of SPHERE enables spectral resolution an order of magnitude higher than other extreme AO exoplanet imaging instruments. With a low mass, cool temperature, and very red colors, 2M0122-2439 B occupies a particularly important region of the substellar color-magnitude diagram by bridging the warm directly imaged hot planets with late-M/early-L spectral types (e.g. β\beta Pic b and ROXs 42Bb) and the cooler, dusty objects near the L/T transition (e.g. HR 8799bcde and 2MASS 1207b). We fit BT-Settl atmospheric models to our RR\approx350 spectrum and find TeffT_{\rm eff}=1600±\pm100 K and log(g)\log(g)=4.5±\pm0.5 dex. Visual analysis of our 2M0122-2439 B spectrum suggests a spectral type L3-L4, and we resolve shallow JJ-band alkali lines, confirming its low gravity and youth. Specifically, we use the Allers & Liu (2013) spectral indices to quantitatively measure the strength of the FeH, VO, KI, spectral features, as well as the overall HH-band shape. Using these indices, along with the visual spectral type analysis, we classify 2M0122-2439 B as an intermediate gravity (INT-G) object with spectral type L3.7±\pm1.0.Comment: Accepted to ApJ Letters, 8 pages, 4 figures, some minor typographical issues were fixe

    Brown Dwarfs in Young Moving Groups from Pan-STARRS1. I. AB Doradus

    Full text link
    Substellar members of young (\lesssim150 Myr) moving groups are valuable benchmarks to empirically define brown dwarf evolution with age and to study the low-mass end of the initial mass function. We have combined Pan-STARRS1 (PS1) proper motions with optical-IR photometry from PS1, 2MASS and WISE\textit{WISE} to search for substellar members of the AB Dor Moving Group within \approx50 pc and with spectral types of late-M to early-L, corresponding to masses down to \approx30 MJup_{Jup} at the age of the group (\approx125 Myr). Including both photometry and proper motions allows us to better select candidates by excluding field dwarfs whose colors are similar to young AB~Dor Moving Group members. Our near-IR spectroscopy has identified six ultracool dwarfs (M6-L4; \approx30-100 MJup_{Jup}) with intermediate surface gravities (INT-G) as candidate members of the AB Dor Moving Group. We find another two candidate members with spectra showing hints of youth but consistent with field gravities. We also find four field brown dwarfs unassociated with the AB Dor Moving Group, three of which have INT-G gravity classification. While signatures of youth are present in the spectra of our \approx125 Myr objects, neither their JKJ-K nor W1W2W1-W2 colors are significantly redder than field dwarfs with the same spectral types, unlike younger ultracool dwarfs. We also determined PS1 parallaxes for eight of our candidates and one previously identified AB Dor Moving Group candidate. Although radial velocities (and parallaxes, for some) are still needed to fully assess membership, these new objects provide valuable insight into the spectral characteristics and evolution of young brown dwarfs.Comment: ApJ, accepte

    The Hawaii Infrared Parallax Program. VI. The Fundamental Properties of 1000+ Ultracool Dwarfs and Planetary-mass Objects Using Optical to Mid-IR SEDs and Comparison to BT-Settl and ATMO 2020 Model Atmospheres

    Full text link
    We derive the bolometric luminosities (LbolL_{\mathrm{bol}}) of 865 field-age and 189 young ultracool dwarfs (spectral types M6-T9, including 40 new discoveries presented here) by directly integrating flux-calibrated optical to mid-IR spectral energy distributions (SEDs). The SEDs consist of low-resolution (RR\sim 150) near-IR (0.8-2.5 μ\mum) spectra (including new spectra for 97 objects), optical photometry from the Pan-STARRS1 survey, and mid-IR photometry from the CatWISE2020 survey and Spitzer/IRAC. Our LbolL_{\mathrm{bol}} calculations benefit from recent advances in parallaxes from Gaia, Spitzer, and UKIRT, as well as new parallaxes for 19 objects from CFHT and Pan-STARRS1 presented here. Coupling our LbolL_{\mathrm{bol}} measurements with a new uniform age analysis for all objects, we estimate substellar masses, radii, surface gravities, and effective temperatures (TeffT_{\mathrm{eff}}) using evolutionary models. We construct empirical relationships for LbolL_{\mathrm{bol}} and TeffT_{\mathrm{eff}} as functions of spectral type and absolute magnitude, determine bolometric corrections in optical and infrared bandpasses, and study the correlation between evolutionary model-derived surface gravities and near-IR gravity classes. Our sample enables a detailed characterization of BT-Settl and ATMO 2020 atmospheric model systematics as a function of spectral type and position in the near-IR color-magnitude diagram. We find the greatest discrepancies between atmospheric and evolutionary model-derived TeffT_{\mathrm{eff}} (up to 800 K) and radii (up to 2.0 RJupR_{\mathrm{Jup}}) at the M/L transition boundary. With 1054 objects, this work constitutes the largest sample to date of ultracool dwarfs with determinations of their fundamental parameters.Comment: Resubmitted to The Astrophysical Journal (ApJ) after a positive referee report. 51 pages, 29 figures, 7 tables. Data presented in this work: https://doi.org/10.5281/zenodo.8315643. Scripts associated with methods: https://github.com/cosmicoder/HIPPVI-Cod

    K2 Discovers a Busy Bee: An Unusual Transiting Neptune Found in the Beehive Cluster

    Full text link
    Open clusters have been the focus of several exoplanet surveys but only a few planets have so far been discovered. The \emph{Kepler} spacecraft revealed an abundance of small planets around small, cool stars, therefore, such cluster members are prime targets for exoplanet transit searches. Kepler's new mission, K2, is targeting several open clusters and star-forming regions around the ecliptic to search for transiting planets around their low-mass constituents. Here, we report the discovery of the first transiting planet in the intermediate-age (800 Myr) Beehive cluster (Praesepe). K2-95 is a faint (Kp=15.5mag\mathrm{Kp = 15.5\,mag}) M3.0±0.5\mathrm{M3.0\pm0.5} dwarf from K2's Campaign 5 with an effective temperature of 3471±124K\mathrm{3471 \pm 124\,K}, approximately solar metallicity and a radius of 0.402±0.050R\mathrm{0.402 \pm 0.050 \,R_\odot}. We detected a transiting planet with a radius of 3.470.53+0.78R\mathrm{3.47^{+0.78}_{-0.53} \, R_\oplus} and an orbital period of 10.134 days. We combined photometry, medium/high-resolution spectroscopy, adaptive optics/speckle imaging and archival survey images to rule out any false positive detection scenarios, validate the planet, and further characterize the system. The planet's radius is very unusual as M-dwarf field stars rarely have Neptune-sized transiting planets. The comparatively large radius of K2-95b is consistent with the other recently discovered cluster planets K2-25b (Hyades) and K2-33b (Upper Scorpius), indicating systematic differences in their evolutionary states or formation. These discoveries from K2 provide a snapshot of planet formation and evolution in cluster environments and thus make excellent laboratories to test differences between field-star and cluster planet populations.Comment: 14 pages, 8 figues. Accepted for publication in A

    Stellar and Planetary Parameters for K2's Late-type Dwarf Systems from C1 to C5

    Get PDF
    The NASA K2 mission uses photometry to find planets transiting stars of various types. M dwarfs are of high interest since they host more short-period planets than any other type of main-sequence star and transiting planets around M dwarfs have deeper transits compared to other main-sequence stars. In this paper, we present stellar parameters from K and M dwarfs hosting transiting planet candidates discovered by our team. Using the SOFI spectrograph on the European Southern Observatory's New Technology Telescope, we obtained R ≈ 1000 J-, H-, and K-band (0.95–2.52 μm) spectra of 34 late-type K2 planet and candidate planet host systems and 12 bright K4–M5 dwarfs with interferometrically measured radii and effective temperatures. Out of our 34 late-type K2 targets, we identify 27 of these stars as M dwarfs. We measure equivalent widths of spectral features, derive calibration relations using stars with interferometric measurements, and estimate stellar radii, effective temperatures, masses, and luminosities for the K2 planet hosts. Our calibrations provide radii and temperatures with median uncertainties of 0.059 R⊙ (16.09%) and 160 K (4.33%), respectively. We then reassess the radii and equilibrium temperatures of known and candidate planets based on our spectroscopically derived stellar parameters. Since a planet's radius and equilibrium temperature depend on the parameters of its host star, our study provides more precise planetary parameters for planets and candidates orbiting late-type stars observed with K2. We find a median planet radius and an equilibrium temperature of approximately 3 R⊕ and 500 K, respectively, with several systems (K2-18b and K2-72e) receiving near-Earth-like levels of incident irradiation

    Prospecting in ultracool dwarfs : Measuring the metallicities of mid- and late-m dwarfs

    Get PDF
    © 2014. The American Astronomical Society. All rights reserved.Metallicity is a fundamental parameter that contributes to the physical characteristics of a star. The low temperatures and complex molecules present in M dwarf atmospheres make it difficult to measure their metallicities using techniques that have been commonly used for Sun-like stars. Although there has been significant progress in developing empirical methods to measure M dwarf metallicities over the last few years, these techniques have been developed primarily for early- to mid-M dwarfs. We present a method to measure the metallicity of mid- to late-M dwarfs from moderate resolution (R ∼ 2000) K-band (≃ 2.2 μm) spectra. We calibrate our formula using 44 wide binaries containing an F, G, K, or early-M primary of known metallicity and a mid- to late-M dwarf companion. We show that similar features and techniques used for early-M dwarfs are still effective for late-M dwarfs. Our revised calibration is accurate to ∼0.07 dex for M4.5-M9.5 dwarfs with -0.58 <[Fe/H] <+0.56 and shows no systematic trends with spectral type, metallicity, or the method used to determine the primary star metallicity. We show that our method gives consistent metallicities for the components of M+M wide binaries. We verify that our new formula works for unresolved binaries by combining spectra of single stars. Lastly, we show that our calibration gives consistent metallicities with the Mann et al. study for overlapping (M4-M5) stars, establishing that the two calibrations can be used in combination to determine metallicities across the entire M dwarf sequence.Peer reviewe

    Two Small Temperate Planets Transiting Nearby M Dwarfs in K2 Campaigns 0 and 1

    Get PDF
    The prime Kepler mission revealed that small planets (<4 R_⊕) are common, especially around low-mass M dwarfs. K2, the repurposed Kepler mission, continues this exploration of small planets around small stars. Here we combine K2 photometry with spectroscopy, adaptive optics imaging, and archival survey images to analyze two small planets orbiting the nearby field-age M dwarfs, K2-26 (EPIC 202083828) and K2-9. K2-26 is an M 1.0 ± 0.5 dwarf at 93 ± 7 pc from K2 Campaign 0. We validate its planet with a day period of 14.5665 and estimate a radius of 2.67_(-0.42)^(+0.46)R_⊕. K2-9 is an M2.5 ± 0.5 dwarf at 110 ± 12 pc from K2 Campaign 1. K2-9b was first identified by Montet et al.; here we present spectra and adaptive optics imaging of the host star and independently validate and characterize the planet. Our analyses indicate K2-9b is a 2.25_(-0.96)^(+0.53)R_⊕ planet with a 18.4498 day period. K2-26b exhibits a transit duration that is too long to be consistent with a circular orbit given its measured stellar radius. Thus, the long transits are likely due to the photoeccentric effect and our transit fits hint at an eccentric orbit. Both planets receive low incident flux from their host stars and have estimated equilibrium temperatures <500 K. K2-9b may receive approximately Earth-like insolation. However, its host star exhibits strong GALEX UV emission which could affect any atmosphere it harbors. K2-26b and K2-9b are representatives of a poorly studied class of small planets with cool temperatures that have radii intermediate to Earth and Neptune. Future study of these systems can provide key insight into trends in bulk composition and atmospheric properties at the transition from silicate dominated to volatile rich bodies
    corecore