146 research outputs found
Galaxy Zoo: Dust in Spirals
We investigate the effect of dust on spiral galaxies by measuring the
inclination-dependence of optical colours for 24,276 well-resolved SDSS
galaxies visually classified in Galaxy Zoo. We find clear trends of reddening
with inclination which imply a total extinction from face-on to edge-on of 0.7,
0.6, 0.5 and 0.4 magnitudes for the ugri passbands. We split the sample into
"bulgy" (early-type) and "disky" (late-type) spirals using the SDSS fracdeV (or
f_DeV) parameter and show that the average face-on colour of "bulgy" spirals is
redder than the average edge-on colour of "disky" spirals. This shows that the
observed optical colour of a spiral galaxy is determined almost equally by the
spiral type (via the bulge-disk ratio and stellar populations), and reddening
due to dust. We find that both luminosity and spiral type affect the total
amount of extinction, with "disky" spirals at M_r ~ -21.5 mags having the most
reddening. This decrease of reddening for the most luminous spirals has not
been observed before and may be related to their lower levels of recent star
formation. We compare our results with the latest dust attenuation models of
Tuffs et al. We find that the model reproduces the observed trends reasonably
well but overpredicts the amount of u-band attenuation in edge-on galaxies. We
end by discussing the effects of dust on large galaxy surveys and emphasize
that these effects will become important as we push to higher precision
measurements of galaxy properties and their clustering.Comment: MNRAS in press. 25 pages, 22 figures (including an abstract comparing
GZ classifications with common automated methods for selecting disk/early
type galaxies in SDSS data). v2 corrects typos found in proof
Galaxy Zoo: the dependence of morphology and colour on environment
We analyse the relationships between galaxy morphology, colour, environment
and stellar mass using data for over 100,000 objects from Galaxy Zoo, the
largest sample of visually classified morphologies yet compiled. We
conclusively show that colour and morphology fractions are very different
functions of environment. Both are sensitive to stellar mass; however, at fixed
stellar mass, while colour is also highly sensitive to environment, morphology
displays much weaker environmental trends. Only a small part of both relations
can be attributed to variation in the stellar mass function with environment.
Galaxies with high stellar masses are mostly red, in all environments and
irrespective of their morphology. Low stellar-mass galaxies are mostly blue in
low-density environments, but mostly red in high-density environments, again
irrespective of their morphology. The colour-density relation is primarily
driven by variations in colour fractions at fixed morphology, in particular the
fraction of spiral galaxies that have red colours, and especially at low
stellar masses. We demonstrate that our red spirals primarily include galaxies
with true spiral morphology. We clearly show there is an environmental
dependence for colour beyond that for morphology. Before using the Galaxy Zoo
morphologies to produce the above results, we first quantify a luminosity-,
size- and redshift-dependent classification bias that affects this dataset, and
probably most other studies of galaxy population morphology. A correction for
this bias is derived and applied to produce a sample of galaxies with reliable
morphological type likelihoods, on which we base our analysis.Comment: 25 pages, 20 figures (+ 6 pages, 11 figures in appendices);
moderately revised following referee's comments; accepted by MNRA
The Effects of Gas on Morphological Transformation in Mergers: Implications for Bulge and Disk Demographics
Transformation of disks into spheroids via mergers is a well-accepted element
of galaxy formation models. However, recent simulations have shown that bulge
formation is suppressed in increasingly gas-rich mergers. We investigate the
global implications of these results in a cosmological framework, using
independent approaches: empirical halo-occupation models (where galaxies are
populated in halos according to observations) and semi-analytic models. In
both, ignoring the effects of gas in mergers leads to the over-production of
spheroids: low and intermediate-mass galaxies are predicted to be
bulge-dominated (B/T~0.5 at <10^10 M_sun), with almost no bulgeless systems),
even if they have avoided major mergers. Including the different physical
behavior of gas in mergers immediately leads to a dramatic change: bulge
formation is suppressed in low-mass galaxies, observed to be gas-rich (giving
B/T~0.1 at <10^10 M_sun, with a number of bulgeless galaxies in good agreement
with observations). Simulations and analytic models which neglect the
similarity-breaking behavior of gas have difficulty reproducing the strong
observed morphology-mass relation. However, the observed dependence of gas
fractions on mass, combined with suppression of bulge formation in gas-rich
mergers, naturally leads to the observed trends. Discrepancies between
observations and models that ignore the role of gas increase with redshift; in
models that treat gas properly, galaxies are predicted to be less
bulge-dominated at high redshifts, in agreement with the observations. We
discuss implications for the global bulge mass density and future observational
tests.Comment: 14 pages, 11 figures, accepted to MNRAS (matched published version).
A routine to return the galaxy merger rates discussed here is available at
http://www.cfa.harvard.edu/~phopkins/Site/mergercalc.htm
Highlights from the Pierre Auger Observatory
The Pierre Auger Observatory is the world's largest cosmic ray observatory.
Our current exposure reaches nearly 40,000 km str and provides us with an
unprecedented quality data set. The performance and stability of the detectors
and their enhancements are described. Data analyses have led to a number of
major breakthroughs. Among these we discuss the energy spectrum and the
searches for large-scale anisotropies. We present analyses of our X
data and show how it can be interpreted in terms of mass composition. We also
describe some new analyses that extract mass sensitive parameters from the 100%
duty cycle SD data. A coherent interpretation of all these recent results opens
new directions. The consequences regarding the cosmic ray composition and the
properties of UHECR sources are briefly discussed.Comment: 9 pages, 12 figures, talk given at the 33rd International Cosmic Ray
Conference, Rio de Janeiro 201
A search for point sources of EeV photons
Measurements of air showers made using the hybrid technique developed with
the fluorescence and surface detectors of the Pierre Auger Observatory allow a
sensitive search for point sources of EeV photons anywhere in the exposed sky.
A multivariate analysis reduces the background of hadronic cosmic rays. The
search is sensitive to a declination band from -85{\deg} to +20{\deg}, in an
energy range from 10^17.3 eV to 10^18.5 eV. No photon point source has been
detected. An upper limit on the photon flux has been derived for every
direction. The mean value of the energy flux limit that results from this,
assuming a photon spectral index of -2, is 0.06 eV cm^-2 s^-1, and no celestial
direction exceeds 0.25 eV cm^-2 s^-1. These upper limits constrain scenarios in
which EeV cosmic ray protons are emitted by non-transient sources in the
Galaxy.Comment: 28 pages, 10 figures, accepted for publication in The Astrophysical
Journa
Reconstruction of inclined air showers detected with the Pierre Auger Observatory
We describe the method devised to reconstruct inclined cosmic-ray air showers
with zenith angles greater than detected with the surface array of
the Pierre Auger Observatory. The measured signals at the ground level are
fitted to muon density distributions predicted with atmospheric cascade models
to obtain the relative shower size as an overall normalization parameter. The
method is evaluated using simulated showers to test its performance. The energy
of the cosmic rays is calibrated using a sub-sample of events reconstructed
with both the fluorescence and surface array techniques. The reconstruction
method described here provides the basis of complementary analyses including an
independent measurement of the energy spectrum of ultra-high energy cosmic rays
using very inclined events collected by the Pierre Auger Observatory.Comment: 27 pages, 19 figures, accepted for publication in Journal of
Cosmology and Astroparticle Physics (JCAP
Exploring the impact of animal involvement in the learning experiences of learners mainly with autism in the English West Midlands region: a qualitative study
Learners with autism are affected by different challenges during learning. There is a growing focus on education to facilitate learners to become more self-resilient by involving animals in learning spaces. This qualitative study explored the impact of animal involvement on the learning experiences of learners with autism. Twenty diaries, 32 questionnaires, and 40 guided narratives and pictorial voices were used to collect data. The study found that learners demonstrated improved communication, imagination, empathy, motivation, calculation skills, responsibility, and well-being while interacting with animals. The study concluded that involving animals in the learning spaces has significant positive impact on learners
A review of elliptical and disc galaxy structure, and modern scaling laws
A century ago, in 1911 and 1913, Plummer and then Reynolds introduced their
models to describe the radial distribution of stars in `nebulae'. This article
reviews the progress since then, providing both an historical perspective and a
contemporary review of the stellar structure of bulges, discs and elliptical
galaxies. The quantification of galaxy nuclei, such as central mass deficits
and excess nuclear light, plus the structure of dark matter halos and cD galaxy
envelopes, are discussed. Issues pertaining to spiral galaxies including dust,
bulge-to-disc ratios, bulgeless galaxies, bars and the identification of
pseudobulges are also reviewed. An array of modern scaling relations involving
sizes, luminosities, surface brightnesses and stellar concentrations are
presented, many of which are shown to be curved. These 'redshift zero'
relations not only quantify the behavior and nature of galaxies in the Universe
today, but are the modern benchmark for evolutionary studies of galaxies,
whether based on observations, N-body-simulations or semi-analytical modelling.
For example, it is shown that some of the recently discovered compact
elliptical galaxies at 1.5 < z < 2.5 may be the bulges of modern disc galaxies.Comment: Condensed version (due to Contract) of an invited review article to
appear in "Planets, Stars and Stellar
Systems"(www.springer.com/astronomy/book/978-90-481-8818-5). 500+ references
incl. many somewhat forgotten, pioneer papers. Original submission to
Springer: 07-June-201
- …