64 research outputs found

    A cross-sectional survey to establish Theileria parva prevalence and vector control at the wildlife-livestock interface, Northern Tanzania

    Get PDF
    East Coast fever (ECF) in cattle is caused by the protozoan parasite Theileria parva, transmitted by Rhipicephalus appendiculatus ticks. In cattle ECF is often fatal, causing annual losses >$500 million across its range. The African buffalo (Syncerus caffer) is the natural host for T. parva but the transmission dynamics between wild hosts and livestock are poorly understood. This study aimed to determine the prevalence of T. parva in cattle, in a 30 km zone adjacent to the Serengeti National Park, Tanzania where livestock and buffalo co-exist, and to ascertain how livestock keepers controlled ECF and other vector-borne diseases of cattle. A randomised cross-sectional cattle survey and questionnaire of vector control practices were conducted. Blood samples were collected from 770 cattle from 48 herds and analysed by PCR to establish T. parva prevalence. Half body tick counts were recorded on every animal. Farmers were interviewed (n = 120; including the blood sampled herds) using a standardised questionnaire to obtain data on vector control practices. Local workshops were held to discuss findings and validate results. Overall prevalence of T. parva in cattle was 5.07% (CI: 3.70−7.00%), with significantly higher prevalence in older animals. Although all farmers reported seeing ticks on their cattle, tick counts were very low with 78% cattle having none. Questionnaire analysis indicated significant acaricide use with 79% and 41% of farmers reporting spraying or dipping with cypermethrin-based insecticides, respectively. Some farmers reported very frequent spraying, as often as every four days. However, doses per animal were often insufficient. These data indicate high levels of acaricide use, which may be responsible for the low observed tick burdens and low ECF prevalence. This vector control is farmer-led and aimed at both tick- and tsetse-borne diseases of livestock. The levels of acaricide use raise concerns regarding sustainability; resistance development is a risk, particularly in ticks. Integrating vaccination as part of this community-based disease control may alleviate acaricide dependence, but increased understanding of the Theileria strains circulating in wildlife-livestock interface areas is required to establish the potential benefits of vaccination

    Illustrated Abstracts of the 5th EUPLAN International Conference

    Get PDF
    These illustrated capsules have been prepared by some speakers of State-of-the-Art talks and of original investigations, presented at the 5th European Platelet Network (EUPLAN) International Conference, which was held at the Università degli Studi di Milano (Italy) on September 28-30, 2022. The programme featured various state-of-the-art lectures and a selection of oral presentations covering a broad range of topics in platelet and megakaryocyte biology, from basic science to recent advances in clinical studies. As usual, the meeting brought together senior scientists and trainees in an informal atmosphere to discuss platelet science in person

    Identification of a homozygous recessive variant in PTGS1 resulting in a congenital aspirin-like defect in platelet function

    Get PDF
    We have identified a rare missense variant on chromosome 9, position 125145990 (GRCh37), in exon 8 in PTGS1 (the gene encoding cyclo-oxygenase 1, COX-1, the target of anti-thrombotic aspirin therapy). We report that in the homozygous state within a large consanguineous family this variant is associated with a bleeding phenotype and alterations in platelet reactivity and eicosanoid production. Western blotting and confocal imaging demonstrated that COX-1 was absent in the platelets of three family members homozygous for the PTGS1 variant but present in their leukocytes. Platelet reactivity, as assessed by aggregometry, lumi-aggregometry and flow cytometry, was impaired in homozygous family members, as were platelet adhesion and spreading. The productions of COX-derived eicosanoids by stimulated platelets were greatly reduced but there were no changes in the levels of urinary metabolites of COX-derived eicosanoids. The proband exhibited additional defects in platelet aggregation and spreading which may explain why her bleeding phenotype was slightly more severe than those of other homozygous affected relatives. This is the first demonstration in humans of the specific loss of platelet COX-1 activity and provides insight into its consequences for platelet function and eicosanoid metabolism. Notably despite the absence of thromboxane A2 (TXA2) formation by platelets, urinary TXA2 metabolites were in the normal range indicating these cannot be assumed as markers of in vivo platelet function. Results from this study are important benchmarks for the effects of aspirin upon platelet COX-1, platelet function and eicosanoid production as they define selective platelet COX-1 ablation within humans

    Uganda's experience in Ebola virus disease outbreak preparedness, 2018-2019.

    Get PDF
    BACKGROUND: Since the declaration of the 10th Ebola Virus Disease (EVD) outbreak in DRC on 1st Aug 2018, several neighboring countries have been developing and implementing preparedness efforts to prevent EVD cross-border transmission to enable timely detection, investigation, and response in the event of a confirmed EVD outbreak in the country. We describe Uganda's experience in EVD preparedness. RESULTS: On 4 August 2018, the Uganda Ministry of Health (MoH) activated the Public Health Emergency Operations Centre (PHEOC) and the National Task Force (NTF) for public health emergencies to plan, guide, and coordinate EVD preparedness in the country. The NTF selected an Incident Management Team (IMT), constituting a National Rapid Response Team (NRRT) that supported activation of the District Task Forces (DTFs) and District Rapid Response Teams (DRRTs) that jointly assessed levels of preparedness in 30 designated high-risk districts representing category 1 (20 districts) and category 2 (10 districts). The MoH, with technical guidance from the World Health Organisation (WHO), led EVD preparedness activities and worked together with other ministries and partner organisations to enhance community-based surveillance systems, develop and disseminate risk communication messages, engage communities, reinforce EVD screening and infection prevention measures at Points of Entry (PoEs) and in high-risk health facilities, construct and equip EVD isolation and treatment units, and establish coordination and procurement mechanisms. CONCLUSION: As of 31 May 2019, there was no confirmed case of EVD as Uganda has continued to make significant and verifiable progress in EVD preparedness. There is a need to sustain these efforts, not only in EVD preparedness but also across the entire spectrum of a multi-hazard framework. These efforts strengthen country capacity and compel the country to avail resources for preparedness and management of incidents at the source while effectively cutting costs of using a "fire-fighting" approach during public health emergencies

    A novel genetic variant in PTGS1 affects N-glycosylation of cyclooxygenase-1 causing a dominant-negative effect on platelet function and bleeding diathesis.

    Get PDF
    During platelet activation, arachidonic acid (AA) is released from membrane phospholipids and metabolized to thromboxane A2 (TXA2) through the actions of cyclooxygenase-1 (COX-1) and TXA2 synthase. Note, TXA2 binds to the platelet TXA2 receptor, causing shape change, secretion and platelet aggregation.1 Also, COX-1 (599aa; 70 kDa) has cyclooxygenase and peroxidase activities and it is functionally active as a homodimer, with each COX-1 monomer consisting of four highly conserved domains: an N-terminal signal peptide, a dimerization domain, a membrane-binding domain (MBD) and a large C-terminal catalytic domain2 (Figure 1A). Irreversible COX-1 inhibition by aspirin is a widely established anti-platelet therapy in cardiovascular disease.Fundación Mutua Madrileña, Grant/Award Number: AP172142019; Fundación Séneca, Grant/Award Number: 19873/GERM/15; Gerencia Regional de Salud, Grant/Award Numbers: 1647/A/17, 2061A/19; Instituto de Salud Carlos III (ISCIII) & Feder, Grant/Award Numbers: CB15/00055, PI17/01966, PI18/00598, PI20/00926, PI17/01311; Junta de Castilla y León; British Heart Foundation, Grant/Award Number: PG/17/40/33028; Ayuda a Grupos de Trabajo en Patología Hemorrágica; Premio López Borrasca 2019; Sociedad Española de Trombosis y Hemostasia

    Phylogenetic ctDNA analysis depicts early-stage lung cancer evolution.

    Get PDF
    The early detection of relapse following primary surgery for non-small-cell lung cancer and the characterization of emerging subclones, which seed metastatic sites, might offer new therapeutic approaches for limiting tumour recurrence. The ability to track the evolutionary dynamics of early-stage lung cancer non-invasively in circulating tumour DNA (ctDNA) has not yet been demonstrated. Here we use a tumour-specific phylogenetic approach to profile the ctDNA of the first 100 TRACERx (Tracking Non-Small-Cell Lung Cancer Evolution Through Therapy (Rx)) study participants, including one patient who was also recruited to the PEACE (Posthumous Evaluation of Advanced Cancer Environment) post-mortem study. We identify independent predictors of ctDNA release and analyse the tumour-volume detection limit. Through blinded profiling of postoperative plasma, we observe evidence of adjuvant chemotherapy resistance and identify patients who are very likely to experience recurrence of their lung cancer. Finally, we show that phylogenetic ctDNA profiling tracks the subclonal nature of lung cancer relapse and metastasis, providing a new approach for ctDNA-driven therapeutic studies

    Shared genetic risk between eating disorder- and substance-use-related phenotypes:Evidence from genome-wide association studies

    Get PDF
    First published: 16 February 202

    Allele-Specific HLA Loss and Immune Escape in Lung Cancer Evolution

    Get PDF
    Immune evasion is a hallmark of cancer. Losing the ability to present neoantigens through human leukocyte antigen (HLA) loss may facilitate immune evasion. However, the polymorphic nature of the locus has precluded accurate HLA copy-number analysis. Here, we present loss of heterozygosity in human leukocyte antigen (LOHHLA), a computational tool to determine HLA allele-specific copy number from sequencing data. Using LOHHLA, we find that HLA LOH occurs in 40% of non-small-cell lung cancers (NSCLCs) and is associated with a high subclonal neoantigen burden, APOBEC-mediated mutagenesis, upregulation of cytolytic activity, and PD-L1 positivity. The focal nature of HLA LOH alterations, their subclonal frequencies, enrichment in metastatic sites, and occurrence as parallel events suggests that HLA LOH is an immune escape mechanism that is subject to strong microenvironmental selection pressures later in tumor evolution. Characterizing HLA LOH with LOHHLA refines neoantigen prediction and may have implications for our understanding of resistance mechanisms and immunotherapeutic approaches targeting neoantigens. Video Abstract [Figure presented] Development of the bioinformatics tool LOHHLA allows precise measurement of allele-specific HLA copy number, improves the accuracy in neoantigen prediction, and uncovers insights into how immune escape contributes to tumor evolution in non-small-cell lung cancer
    corecore