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We have identified a rare missense variant on chromosome 9, position
125145990 (GRCh37), in exon 8 in prostaglandin endoperoxide syn-
thase 1 (PTGS1) (the gene encoding cyclo-oxygenase 1 [COX-1], the

target of anti-thrombotic aspirin therapy). We report that in the homozygous
state within a large consanguineous family this variant is associated with a
bleeding phenotype and alterations in platelet reactivity and eicosanoid produc-
tion. Western blotting and confocal imaging demonstrated that COX-1 was
absent in the platelets of three family members homozygous for the PTGS1 vari-
ant but present in their leukocytes. Platelet reactivity, as assessed by aggregom-
etry, lumi-aggregometry and flow cytometry, was impaired in homozygous fam-
ily members, as were platelet adhesion and spreading. The productions of COX-
derived eicosanoids by stimulated platelets were greatly reduced but there were
no changes in the levels of urinary metabolites of COX-derived eicosanoids. The
proband exhibited additional defects in platelet aggregation and spreading which
may explain why her bleeding phenotype was slightly more severe than those
of other homozygous affected relatives. This is the first demonstration in
humans of the specific loss of platelet COX-1 activity and provides insight into
its consequences for platelet function and eicosanoid metabolism. Notably
despite the absence of thromboxane A2 formation by platelets, urinary throm-
boxane A2 metabolites were in the normal range indicating these cannot be
assumed as markers of in vivo platelet function. Results from this study are
important benchmarks for the effects of aspirin upon platelet COX-1, platelet
function and eicosanoid production as they define selective platelet COX-1 abla-
tion within humans.
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ABSTRACT



Introduction

Platelets are central to the processes of hemostasis and
thrombosis, the latter of which can lead to cardiovascular
events such as myocardial infarction or stroke. At sites of
vascular injury, platelets are activated upon interaction
with collagen, von Willebrand factor (VWF) and fibrino-
gen and undergo shape change. In order to form a platelet
plug, platelets first adhere, then pseudopodia extend from
the surface. Following this, lamellipodia spread between
these protrusions, resulting in a fully spread platelet with-
in 30 minutes (min).1,2 Platelets release the contents of their
dense and α-granules, reinforcing activation and leading to
the recruitment of further platelets to form a hemostatic
plug in a positive feedback loop.3 A second feedback loop
comprises liberation of arachidonic acid (AA) from mem-
brane phospholipids by phospholipase A2 (PLA2) to form
thromboxane A2 (TXA2). 
AA is the substrate for three groups of eicosanoid-pro-

ducing enzymes: lipoxygenase (LOX) which leads to
hydroxyeicosatraenoic acids (HETE) and leukotrienes,
cytochrome P450 (CYP450) which leads to epoxye-
icosatrienoic acids (EET) and cyclo-oxygenase (COX)
which leads to prostanoids. COX exists in two isoforms,
the constitutively expressed COX-1 (more precisely known
as prostaglandin endoperoxide synthase 1 [PTGS1]) and
the (generally) inducible COX-2 [PTGS2], which both con-
vert AA into prostaglandin (PG) G2 via an oxygenation
reaction and then PGH2 via a peroxidase reaction.4–6 In
platelets, PGH2 is then converted by thromboxane syn-
thase to the pro-aggregatory TXA2.

7 TXA2 is a key part of
the positive feedback loop mentioned above. Irreversible
blockade of platelet COX-1 by aspirin abolishes the pro-
duction of TXA2 by platelets, explaining its efficacy in anti-
thrombotic prophylaxis.8 Because of aspirin’s short half-life
within the body and its irreversible effects upon COX, a
low dose (75-100 mg per day) demonstrates a more selec-
tive effect upon platelets than upon the rest of the body,
where nucleated cells can regenerate COX-1 protein.9–11
Here, we describe the first case of autosomal recessive

inheritance of a rare variant in PTGS1 which reproduces
the selective anti-platelet effect of aspirin and provides
insight into the normal balance of prostanoid production.

Methods

Additional methods can be found in the Online Supplementary
Appendix.

Ethics and consent
The proband and relatives were enrolled in the National

Institute for Health Research (NIHR) BioResource under the
Bleeding, Platelet and Thrombotic Disease domain after providing
informed written consent12,13. The NIHR BioResource projects
were approved by Research Ethics Committees in the UK and
appropriate national ethics authorities in non-UK enrolment cen-
ters. Extensive phenotyping included coding of clinical and labora-
tory phenotypes with Human Phenotype Ontology (HPO) terms
and collection of numerical and family history data was per-
formed as described previously12. Healthy volunteer studies were
approved by the NHS St. Thomas’ Hospital Research Ethics
Committee (07/Q702/24). Healthy volunteers and family mem-
bers abstained from non-steroidal anti-inflammatory drug
(NSAID) use for 2 weeks before sample collection.

Genotyping
The proband and her parents underwent whole genome

sequencing (WGS). Variants were called and annotated as
described previously.13 In all other family members variants in
PTGS1were called by Sanger sequencing.14 Furthermore, the vari-
ant was expressed in cells and COX-activity was measured using
a Clark type oxygen electrode.15

Sample collection
Midstream flow urine was collected and stored for subsequent

eicosanomic analysis.16 Blood was collected by venepuncture into
trisodium citrate (BD Diagnostics, UK). Platelet-rich plasma (PRP)
was obtained by centrifugation at 175xg for 15 min. Platelet-poor
plasma (PPP) was obtained by centrifugation of PRP at 12,000xg
for 2 min. COX-1 protein presence was determined by western
blotting in platelets and confocal microscopy in platelets and
leukocytes. In addition, the number of platelet-monocyte and
platelet-neutrophil aggregates were quantified to assess whether
this variant modulates interactions of platelets with other blood
cells using an ImageStream®X imaging flow cytometer (Merck
Millipore, UK).

Platelet function studies
Platelet reactivity by light transmission aggregometry (LTA) and

Optimul methods was completed within 2 hours of blood collec-
tion.17,18 In parallel, ATP release and P-selectin levels were deter-
mined to establish markers of platelets release and activation
respectively and platelet spreading on collagen-coated surfaces
were performed.19

Data analysis
Statistical summaries are presented as mean±standard deviation

(SD). One-way ANOVA was performed using GraphPad Prism
version 8.1.1 for Mac OS X (GraphPad Software, CA, USA) where
appropriate. Statistically significant differences in means are pre-
sented as *P<0.05, **P<0.01, ***P<0.001 or ****P<0.0001.
Percentiles of control values were generated, and pedigree mem-
ber data was compared to this where only one value was
obtained.

Results

Whole genome sequencing and phenotyping 
of the pedigree
The proband, a female of Iranian descent, aged 37 at

enrolment (Figure 1, IV-1) was referred to the hemophilia
outpatient clinic because of perioperative bleeding follow-
ing a sinus operation. She had a history of cystic fibrosis
(CF), C6 complement deficiency resulting in chronic infec-
tions, b-thalassemia trait and normoprolactinemic galactor-
rhoea. She had more extensive hemoptysis than expected
from her CF and also suffered from frequent nosebleeds. At
presentation she had a normal platelet count of 234x109/L. 
Upon taking the family history we appreciated that she

was part of a large consanguineous family. Moreover, her
mother (III-2) and maternal aunt (III-1) also had a clinical
bleeding phenotype including easy bruising and menor-
rhagia. The two uncles (III-4 and III-5) and a cousin (IV-2)
did not have any clinical bleeding (Figure 1A and B).
Depending on the severity of bleeding, the proband
received desmopressin, tranexamic acid and, very occa-
sionally, platelets.
Sequencing demonstrated that the proband (IV-1), her

mother (III-2) and aunt (III-1) were homozygous for a vari-
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ant on chromosome 9, position 125145990 (GRCh37),
altering a guanine to a cysteine in exon 8 of PTGS1. This
variant resulted in a missense substitution of tryptophan
to serine at amino acid 322 (Figure 1C). The variant had a
Combined Annotation Dependent Depletion (CADD)
score20 of 31.0 and was absent from the Genome
Aggregation Database (gnomAD).21 Using Alamut® Visual,
the new variant has been shown to be highly conserved
with a phyloP score of 9.88. III-3, III-4 and III-5 were het-
erozygous (GC) for the alternate allele while IV-2 was
homozygous for the reference allele (CC), where C repre-
sents the wild-type and G represents the mutant allele. III-
6 and III-7 were unavailable for genotyping. The proband
had an additional biallelic mutation (chromosome 7, posi-
tion 117175467) causing a splice donor variant in the CF
transmembrane conductance regulator (CFTR) gene caus-
ing CF.

COX-1 protein in platelets and leukocytes
COX-1 protein in platelet lysates from the proband and

her homozygous relatives was absent. In III-3 and III-4,
expression was present but reduced and was at normal
levels in III-5 and IV-2 (Figure 2A). The absence of COX-1
protein in platelets from the proband and homozygous
relatives (Figure 2Ci and Di) compared to a healthy control
(Figures 2Bi) was confirmed with immunohistochemical
analysis. COX-1 expression, however, was retained in

leukocytes from all those tested (Figure 2Cii and Dii). The
variant did not affect COX enzyme activity as shown in
kinetic analysis of isolated recombinant protein (wild-
type, Km=7.9±0.8 mmol/L; W322S, Km=14.1±1.1 mmol/L,
Online Supplementary Figure S1A and B). The variant also
had no effect on COX activity after inhibition by aspirin
(Online Supplementary Figure S1C). Though there was no
appreciable phenotypic difference in the quality of inter-
actions observed, there was a reduction in the number of
platelet interactions with monocytes in the proband that
was not found in other family members (controls,
34.8±19.2%; proband, 7.5%; homozygous relatives,
27.4±9.0%; unaffected relatives, 32.8±10.6%; Figure 3A
and C). There was no change in platelet-neutrophil inter-
actions (Figure 3B and D). 

The role of PTGS1 recessive variant on platelet 
reactivity
Platelet reactivity is measured in vitro by aggregation and

release experiments. Aggregation responses to arachidonic
acid (AA; 1 mmol/L) in the proband and her homozygous
relatives were reduced compared to control from 65±7%
to 4±1%; responses to collagen (1 mg/mL and 3 mg/mL)
reduced from 64±13% to 17±10% and from 67±8% to
20±11%, respectively; and responses to adenosine diphos-
phate (ADP) at 10 mmol/L was reduced from 62±11% to
38±13%. Interestingly, the proband also had a greatly

Effects of absence of PTGS1 in platelets
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Figure 1. Pedigree phenotype. (A) Pedigree of the affected family, in which black, white and grey symbols indicate presence of the bleeding phenotype, absence of
the bleeding phenotype and unknown bleeding phenotype, respectively. The genotype, where known, is shown under each symbol, where G is the mutant allele and
C is the reference allele. Double lines indicate consanguinity and strike-through lines are used to indicate deceased individuals. (B) Human Phenotype Ontology (HPO)
annotation of the three affected family members. (C) A ribbon diagram of the crystal structure of aspirin-acetylated cyclo-oxygenase 1 (COX-1) showing the location
of the variant for the proband which results in a missense substitution of tryptophan to serine at amino acid 322.
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reduced response to ristocetin (1.5 mg/mL; control,
69±10%; proband, 7%) which was normal in all family
members tested. Other than a reduced epinephrine (10
mmol/L) response, which was found in all family mem-
bers, there was no difference in other LTA responses of the
unaffected family members compared to control (Figure
4A). These findings were also reflected using Optimul
aggregometry where AA responses were absent, and col-
lagen and epinephrine responses were severely blunted in
the proband and homozygous relatives (Online
Supplementary Figure 2). TRAP-6 amide (25 mmol/L)-stimu-
lated ATP release was normal in all family members. AA
(1 mmol/L) and collagen (3 mg/mL)-stimulated secretion,
however, was below the 20th percentile in the proband
and homozygous relatives (Figure 4B). Upon activation,
platelets express P-selectin and undergo shape change and
spreading. U46619 (0.5 mmol/L)-induced P-selectin expres-
sion was similar in all individuals (Figure 4C). 

The effect of the PTGS1 variant on platelet spreading
The number of platelets with filopodia were increased

in the proband and homozygous family members (con-
trol, 9±6%; proband, 36±17%, P<0.001; homozygous rel-
ative, 36±4%, P<0.01). The PTGS1 variant was also asso-
ciated with a reduction in fully spread platelets (control,
45±6%; proband, 9±9%, P<0.001; homozygous relatives,
22±10%, P<0.001). Adherent platelets and number of
lamellipodia were similar across all individuals tested
(Figure 5). In addition, there were fewer platelets from
both the proband and the homozygous relative that
adhered to the fibrinogen-coated coverslips (control,
26±4%; proband, 8±2%, P<0.001; homozygous relatives,
13±3%, P<0.01).

The role of PTGS1 variant on eicosanoid production by
stimulated whole blood and basal urine metabolites
Incubation of blood from healthy volunteers with colla-

gen or TRAP-6 amide greatly increased the levels of TXB2
(a stable breakdown product of TXA2), 11-dehydro-TXB2
(11-dH-TXB2, a dehydrogenation product of TXB2)

22,
PGE2, PGD2, 15-HETE, 11-HETE and 12-HETE. In the
PTGS1-deficient proband 12-HETE production was unaf-
fected but there was an absence of TXB2, PGE2, PGD2 and
15-HETE (Figure 6A and B; Online Supplementary Table S1).
Despite the fact that platelets are able to synthesize

PGD2, PGE2 and TXA2 from PGH2, urinary metabolites for
these enzymes were unchanged in the proband and
homozygous relatives compared to normal reference
ranges. As expected, PGI2 metabolites, generated by PGI2
prostacyclin synthase from PGH2 in endothelial cells only
were all within the standard range (Figure 6C to F; Online
Supplementary Table S1). Indeed, leukocytes and endothe-
lial cells are additional sources of PGD2 and PGE2 prod-
ucts, respectively. 

Discussion

We report autosomal recessive inheritance of a
homozygous rare missense variant in PTGS1 associated
with an aspirin-like platelet phenotype. This phenotype
provides the opportunity to definitively assess the roles of
platelet COX-1 in human platelet function, including the
production of eicosanoids. This cannot be assumed from
exposure of platelets from other humans to aspirin in vivo
or in vitro as aspirin has effects at sites other than platelet
COX-123.
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Figure 2. COX-1 protein in control, proband and relatives. (A) Western blots and quantification of cyclo-oxygenase 1 (COX-1) and glyceraldehyde 3-phosphate dehy-
drogenase (GAPDH) expression in platelet lysates, isolated from the controls, the proband (IV-1), homozygous (III-1 and III-2) and unaffected (III-3, III-4, III-5 and IV-
2) family members. Representative immunohistochemical analysis of COX-1 expression in (B) control, (C) proband and (D) homozygous relative (i) platelets and (ii)
leukocytes. Washed platelets were identified by tubulin (green) staining and COX-1 (magenta) was present in control but not in the proband or affected relative. In
washed leukocytes, nuclear staining was confirmed by DAPI (blue), LAMP-3 (green) and COX-1 (magenta) was expressed in all samples.
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The 965G>C variant of PTGS1 found in the family
reported here is absent from gnomAD. In the identified
pedigree, however, three of the eight family members
studied were homozygous due to consanguinity and three
were heterozygous for the variant. Interestingly, since this
is a missense variant outside both the functional sites of
the COX enzyme the phenotype was unexpected. Within
the homozygous carriers, despite similar reproducible
platelet aggregation, we saw minor differences in the

bleeding phenotype, which reflects the clinical hetero-
geneity of presentation of some of the rare platelet disor-
ders. This is also consistent with observations that while
millions of people take aspirin daily to prevent secondary
cardiovascular events, and this increases their risk of
bleeding, the vast majority do not suffer from major spon-
taneous bleeding. Similarly, mice with a deficiency in
COX-1 exhibit impaired haemostasis but only after being
challenged by the tail-bleeding assay.24,25

Effects of absence of PTGS1 in platelets
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Figure 3. Analysis of unstimulated whole blood acquired using an ImageStreamX Mark II incorporating a 60x objective lens. Scale bars represent 7 μm and iden-
tified (A) platelet-monocyte and (B) platelet-neutrophil aggregates. Percentage of (C) platelet-monocyte (CD14+) and (D) platelet-neutrophil (CD66b+) aggregates are
quantified. Platelets identified by anti-CD61, leukocytes by anti-CD45, monocytes by anti-CD14 and neutrophils by anti-CD66b.
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As above, data derived from the three pedigree mem-
bers with the homozygous variant demonstrated a consis-
tent effect upon platelet function and eicosanoid profile,
irrespective of other clinical differences. Notably, the
proband had an additional diagnosis of CF and administra-
tion of COX inhibitors, which have anti-inflammatory
effects, has been shown to inhibit the decline of lung func-
tion.26 However, the proband did not show any evidence
of a beneficial effect accruing from the absence of her
platelet COX-1, in keeping with our understanding of the
anti-inflammatory effects of NSAID being mediated pri-
marily via inhibition of COX-2.27
While COX-1 protein was expressed at normal levels

in platelets from the family member with the CC geno-
type, it was absent in those with the GG genotype.
Conversely, COX-1 was still expressed in the leukocytes
irrespective of genotype. This may indicate that the
PTGS1 variant is not expressed by megakaryocytes or
that the variant affects the stability of the protein; i.e.,
that the COX-1 protein degrades more rapidly and then
cannot be replenished within platelets because they lack
transcriptional machinery, akin to what is observed in
erythrocytes in glucose-6-phosphate dehydrogenase
deficiency28. Inheritance of one copy of the mutant allele
resulted in variable but never absent platelet COX-1 pro-
tein levels which were sufficient to sustain function.
When the variant was expressed and characterized, the
recombinant protein was found to have normal enzyme
activity which is consistent with the findings that in
homozygous family members urinary COX-1 metabo-
lites where within the normal range; i.e., implying that

despite the PTGS1 variant, COX-1 activity in tissues
other than the platelet was preserved. Due to constraints
in sample availability, we were unable to investigate
COX-1 protein levels in other nucleated cell types in the
homozygous family members.
Platelet reactivity in the homozygous family members

was consistent with that seen in previous studies in the
presence of aspirin in vitro and in vivo.18,29,30 In particular,
aggregation responses to collagen, epinephrine and ADP
using both light transmission and Optimul aggregometry
were reduced and responses to AA were absent but were
normal to U46619 (TXA2 analogue). Homozygous knock-
out mice for PTGS1 show similar impairment in platelet
aggregation.31,32 ATP release from dense granules induced
by collagen was impaired in platelets from homozygous
family members which is similarly concordant with an
aspirin-like defect29.
Platelet spreading in all homozygous family members

was impaired. Specifically, the number of actin-rich
filopodia was increased, though the number of platelets
which reached the point of being fully spread was lower.
Indeed, the number of platelets which adhered to the fib-
rinogen-coated surface was significantly reduced, indicat-
ing a dysfunction in the process leading to formation of a
stable platelet plug which could increase the risk of bleed-
ing. This evidence suggests that either this variant or an
unknown defect carried by these family members is asso-
ciated with a dysfunction in the signaling mechanisms
required for sufficient spreading. Whilst we did not direct-
ly compare platelet spreading from the homozygous fam-
ily with that of low-dose aspirin-treated healthy subjects,
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Figure 4. Effect of PTGS1 variant on platelet aggregation, secretion, and adhesion responses. (A) Aggregation responses to arachidonic acid (AA; 1 mmol/L), adeno-
sine diphosphate (ADP; 10 mmol/L), collagen (0.1-3 mg/mL), epinephrine (10 mmol/L), ristocetin (1.5 mg/mL), U46619 (3 mmol/L) and TRAP-6 amide (25 mmol/L)
and (B) ATP secretion to  AA (1 mmol/L), ADP (10 mmol/L), collagen (3 mg/mL) and TRAP-6 amide (25 mmol/L). n=20 (healthy controls; range with median); n=1
(proband); n=2 (homozygous relatives); n=4 (unaffected relatives). (C) P-selectin expression as measured by flow cytometry in whole blood stimulated by ADP (40
mmol/L), U46619 (0.5 μmol/L) or ADP plus U46619. 
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Effects of absence of PTGS1 in platelets
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Figure 5. Platelet spreading on fibrinogen-coated surfaces. (A) a control, (B) the proband and (C) a homozygous relative with (D) quantification of adhered platelet,
filopodia, lamellipodia, fully spread platelet frequency and total platelets per field of view.

Figure 6. Contribution of PTGS1 to eicosanoid synthesis in whole blood and urine. Platelet-derived eicosanoid levels in whole blood from healthy volunteers or from
the proband stimulated with collagen (30 mg/mL) (A) or TRAP-6 amide (30 mmol/L) (B). Levels are expressed as increase over levels in vehicle-treated blood. Urinary
(C) prostaglandin (PG) D2 and (D) PGE2 (C) PGI2 and (D) thromboxane A2 (TXA2) metabolite levels in proband, homozygous and unaffected relatives. n=4 (healthy vol-
unteers); n=1 (proband), n=2 (homozygous relatives), n=3 (unaffected relatives). Normal control ranges are indicated. 
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other groups have found that aspirin does not have a sig-
nificant effect on spreading.33
The proband had a more severe bleeding phenotype

than the other family members homozygous for the
PTGS1 variant which might be attributable to an addition-
al diagnosis of CF and antibiotic use34 but is more likely
due to an additional dysfunctional pathway.35,36 Indeed,
ristocetin-induced platelet aggregation was impaired even
though VWB factor antigen (VWF:Ag) and function
(VWF:RCo) levels were in the normal range (83.2 IU/dL
and 71.7 IU/dL respectively). No coagulation defect was
identified which could contribute to bleeding: prothrom-
bin time (9.6 seconds) and activated partial thromboplas-
tin time (28 seconds) were in the normal range and the
proband’s factor VIII level was 0.98 IU/mL, above the
minimum required for normal haemostasis. Furthermore,
no variants were found in GP1b or P-selectin in the
proband. Interestingly, the proband and homozygous rel-
atives had significant changes in platelet spreading on col-
lagen where 70% fewer platelets adhered than samples
taken from controls, a response which is dependent upon
platelet integrin αIIbb3 (which also binds VWF and fibrino-
gen). Also, of the platelets that did adhere, fewer reached
the stage of being fully spread.
As expected, COX-1-deficient platelets in whole blood

failed to produce any COX-derived prostanoids, namely
PGE2, PGD2, 11-HETE, 15-HETE and the stable metabolite
of TXA2 (TXB2) following exposure to platelet ago-
nists.32,37–39 Notably, the individuals supplying these
platelets had thromboxane metabolite (TX-M) levels
within the normal range indicating that urinary TX-M is
not a valid or reliable measure of platelet function; con-
trary to its frequent use for this purpose. This finding sup-
ports our recent report that in humans basal TX-M is not
derived from platelets but from other sources such as the
kidneys,16 and provides further rebuttal to challenges of
this interpretation.40 As urinary TX-M levels are reduced in
humans consuming low dose aspirin8, the findings also
demonstrate that low dose aspirin is not specific for
platelets and inhibits COX at other sites. Previous studies
have measured the urinary eicosanoid profile in CF
patients and reported higher levels of TX-M than in
healthy comparators. This is in agreement with our find-
ings in the proband who had higher levels than other
homozygous family members. This implies that the ele-
vated production of TXA2 in CF leading to increased TX-
M cannot be explained by increased platelet activation.41
Indeed, COX-2 inhibitors reduced urinary TX-M levels in
CF patients consistent with a source other than platelet
COX-1.42
Previous cases have been reported variants in PTGS1

which have been associated with autosomal dominant
inheritance of enhanced bleeding, some impairment of
platelet aggregation and changes in protein levels. There
have been no reports of absence of COX-1 protein and/or
ablation of associated eicosanoid production as reported
here.39,43,52,53,44–51 Nance et al.50 identified a pedigree with a
non-synonymous variant in the signal peptide of PTGS1
(rs3842787; c.50C>T, p.Pro17Leu) that segregated with an
aspirin-like platelet function defect. The proband also car-
ried a variant in the F8 causing hemophilia A (rs28935203;
c.5096A>T; p.Y1699F). The affected family members with
both variants had more severe bleeding than expected
from mild hemophilia A alone. In this study, extensive
platelet function testing was performed demonstrating

impaired platelet aggregation induced by AA, epinephrine
and low dose ADP and reduced platelet TXB2 release.

50

Two compound heterozygous cases have been reported.
The first in a patient with post-procedural bleeds and an
aspirin-like defect who carried two high frequency vari-
ants (R8L and P17L) which had previously been reported
not to have an effect on function.31,52 Analysis of the sec-
ond case identified a rare variant (c.337C>T, p.Arg113Cys;
gnomAD frequency 6.134x10-5) in compound heterozy-
gosity with a common variant (c.1003G>A, p.Val481Ile;
gnomAD frequency 0.007) which was classified as proba-
bly pathogenic and accompanied reduced plasma TXB2
levels.51 Finally, Bastida et al. reported two cases with vari-
ants in PTGS1 (c.35_40delTCCTGC, p.Leu13_Leu14del
and c.428A>G, p.Asn143Ser) by sequencing 82 patients
with an inherited platelet disorder on their high-through-
put sequencing platform to investigate the unknown
molecular pathology. They did not, however, perform in-
depth platelet phenotyping53. Consequently, none of these
previous reports describe complete loss of platelet PTGS1
function. 
In conclusion, we describe the first case of a well charac-

terized family with autosomal recessive inheritance pro-
ducing an aspirin-like platelet function defect due to a rare
variant in PTGS1. This case models the specific loss of
platelet COX-1 activity and provides a benchmark of COX-
1’s role in platelet function and eicosanoid metabolism. 
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