69 research outputs found

    Munchausen by internet: current research and future directions.

    Get PDF
    The Internet has revolutionized the health world, enabling self-diagnosis and online support to take place irrespective of time or location. Alongside the positive aspects for an individual's health from making use of the Internet, debate has intensified on how the increasing use of Web technology might have a negative impact on patients, caregivers, and practitioners. One such negative health-related behavior is Munchausen by Internet

    A review of structural brain abnormalities in Pallister-Killian syndrome

    Get PDF
    Background Pallister-Killian syndrome (PKS) is a rare multisystem developmental syndrome usually caused by mosaic tetrasomy of chromosome 12p that is known to be associated with neurological defects. Methods We describe two patients with PKS, one of whom has bilateral perisylvian polymicrogyria (PMG), the other with macrocephaly, enlarged lateral ventricles and hypogenesis of the corpus callosum. We have also summarized the current literature describing brain abnormalities in PKS. Results We reviewed available cases with intracranial scans (n = 93) and found a strong association between PKS and structural brain abnormalities (77.41%; 72/93). Notably, ventricular abnormalities (45.83%; 33/72), abnormalities of the corpus callosum (25.00%; 18/72) and cerebral atrophy (29.17%; 21/72) were the most frequently reported, while macrocephaly (12.5%; 9/72) and PMG (4.17%; 3/72) were less frequent. To further understand how 12p genes might be relevant to brain development, we identified 63 genes which are enriched in the nervous system. These genes display distinct temporal as well as region-specific expression in the brain, suggesting specific roles in neurodevelopment and disease. Finally, we utilized these data to define minimal critical regions on 12p and their constituent genes associated with atrophy, abnormalities of the corpus callosum, and macrocephaly in PKS. Conclusion Our study reinforces the association between brain abnormalities and PKS, and documents a diverse neurogenetic basis for structural brain abnormalities and impaired function in children diagnosed with this rare disorder

    Seeing the forest through the trees: prioritising potentially functional interactions from Hi-C.

    Get PDF
    Eukaryotic genomes are highly organised within the nucleus of a cell, allowing widely dispersed regulatory elements such as enhancers to interact with gene promoters through physical contacts in three-dimensional space. Recent chromosome conformation capture methodologies such as Hi-C have enabled the analysis of interacting regions of the genome providing a valuable insight into the three-dimensional organisation of the chromatin in the nucleus, including chromosome compartmentalisation and gene expression. Complicating the analysis of Hi-C data, however, is the massive amount of identified interactions, many of which do not directly drive gene function, thus hindering the identification of potentially biologically functional 3D interactions. In this review, we collate and examine the downstream analysis of Hi-C data with particular focus on methods that prioritise potentially functional interactions. We classify three groups of approaches: structural-based discovery methods, e.g. A/B compartments and topologically associated domains, detection of statistically significant chromatin interactions, and the use of epigenomic data integration to narrow down useful interaction information. Careful use of these three approaches is crucial to successfully identifying potentially functional interactions within the genome.Ning Liu, Wai Yee Low, Hamid Alinejad, Rokny, Stephen Pederson, Timothy Sadlon, Simon Barry, and James Bree

    Pancreatic beta cell protection/regeneration with phytotherapy

    Get PDF
    Although currently available drugs are useful in controlling early onset complications of diabetes, serious late onset complications appear in a large number of patients. Considering the physiopathology of diabetes, preventing beta cell degeneration and stimulating the endogenous regeneration of islets will be essential approaches for the treatment of insulin-dependent diabetes mellitus. The current review focused on phytochemicals, the antidiabetic effect of which has been proved by pancreatic beta cell protection/regeneration. Among the hundreds of plants that have been investigated for diabetes, a small fraction has shown the regenerative property and was described in this paper. Processes of pancreatic beta cell degeneration and regeneration were described. Also, the proposed mechanisms for the protective/regenerative effects of such phytochemicals and their potential side effects were discussed

    Discovery of widespread transcription initiation at microsatellites predictable by sequence-based deep neural network

    Get PDF
    Using the Cap Analysis of Gene Expression (CAGE) technology, the FANTOM5 consortium provided one of the most comprehensive maps of transcription start sites (TSSs) in several species. Strikingly, ~72% of them could not be assigned to a specific gene and initiate at unconventional regions, outside promoters or enhancers. Here, we probe these unassigned TSSs and show that, in all species studied, a significant fraction of CAGE peaks initiate at microsatellites, also called short tandem repeats (STRs). To confirm this transcription, we develop Cap Trap RNA-seq, a technology which combines cap trapping and long read MinION sequencing. We train sequence-based deep learning models able to predict CAGE signal at STRs with high accuracy. These models unveil the importance of STR surrounding sequences not only to distinguish STR classes, but also to predict the level of transcription initiation. Importantly, genetic variants linked to human diseases are preferentially found at STRs with high transcription initiation level, supporting the biological and clinical relevance of transcription initiation at STRs. Together, our results extend the repertoire of non-coding transcription associated with DNA tandem repeats and complexify STR polymorphism

    Discovery of widespread transcription initiation at microsatellites predictable by sequence-based deep neural network

    Get PDF
    Using the Cap Analysis of Gene Expression (CAGE) technology, the FANTOM5 consortium provided one of the most comprehensive maps of transcription start sites (TSSs) in several species. Strikingly, ~72% of them could not be assigned to a specific gene and initiate at unconventional regions, outside promoters or enhancers. Here, we probe these unassigned TSSs and show that, in all species studied, a significant fraction of CAGE peaks initiate at microsatellites, also called short tandem repeats (STRs). To confirm this transcription, we develop Cap Trap RNA-seq, a technology which combines cap trapping and long read MinION sequencing. We train sequence-based deep learning models able to predict CAGE signal at STRs with high accuracy. These models unveil the importance of STR surrounding sequences not only to distinguish STR classes, but also to predict the level of transcription initiation. Importantly, genetic variants linked to human diseases are preferentially found at STRs with high transcription initiation level, supporting the biological and clinical relevance of transcription initiation at STRs. Together, our results extend the repertoire of non-coding transcription associated with DNA tandem repeats and complexify STR polymorphism

    Proteomic Analysis of Differentially Expressed Protein in Hemocytes of Wild Giant Freshwater Prawn Macrobrachium Rosenbergii Infected with Infectious Hypodermal and Hematopoietic Necrosis Virus (IHHNV)

    Get PDF
    Epizootic diseases cause huge mortality and economical loses at post larvae stages in freshwater prawn aquaculture industry. These prawns seem less susceptible to viral diseases except for infectious hypodermal and hematopoietic necrosis virus (IHHNV). During viral infection in prawns, hemocytes are the primary organ that shows immunological response within the early stages of infection. We applied proteomic approaches to understand differential expression of the proteins in hemocytes during the viral disease outbreak. To aid the goal, we collected Macrobrachium rosenbergii broodstocks from the local grow out hatchery which reported the first incidence of IHHNV viral outbreak during larvae stage. Primarily, application of the OIE primer targeting 389 bp fragments of IHHNV virus was used in identification of the infected and non-infected samples of the prawn breeding line. Analysis of two-dimensional gel electrophoresis showed specific down-regulation of Arginine kinase and Sarcoplasmic calcium-binding protein and up/down-regulation of Prophenoloxidase1 and hemocyanin isoforms. These proteins were validated using semi quantitative RT-PCR and gene transcripts at mRNA level. These identified proteins can be used as biomarkers, providing a powerful approach to better understanding of the immunity pathway of viral disease with applications in analytic and observational epidemiology diagnosis. Proteomic profiling allows deep insight into the pathogenesis of IHHNV molecular regulation and mechanism of hemocyte in freshwater prawn
    corecore