2,278 research outputs found

    Scalable continuous-variable entanglement of light beams produced by optical parametric oscillators

    Full text link
    We show that scalable multipartite entanglement among light fields may be generated by optical parametric oscillators (OPO). The tripartite entanglement existent among the three bright beams produced by a single OPO -- pump, signal, and idler -- is scalable to a system of many OPOs by pumping them in cascade with the same optical field. This latter serves as an entanglement distributor. The special case of two OPOs is studied, as it is shown that the resulting five bright beams share genuine multipartite entanglement. In addition, the structure of entanglement distribution among the fields can be manipulated to some degree by tuning the incident pump power. The scalability to many fields is straightforward, allowing an alternative implementation of a multipartite quantum information network with continuous variables

    Experimental observation of three-color optical quantum correlations

    Get PDF
    Quantum correlations between bright pump, signal, and idler beams produced by an optical parametric oscillator, all with different frequencies, are experimentally demonstrated. We show that the degree of entanglement between signal and idler fields is improved by using information of pump fluctuations. This is the first observation of three-color optical quantum correlations.Comment: 3 pages, 3 figure

    Entanglement in the above-threshold optical parametric oscillator

    Get PDF
    We investigate entanglement in the above-threshold Optical Parametric Oscillator, both theoretically and experimentally, and discuss its potential applications to quantum information. The fluctuations measured in the subtraction of signal and idler amplitude quadratures are Δ2p^=0.50(1)\Delta^2 \hat p_-=0.50(1), or 3.01(9)-3.01(9) dB, and in the sum of phase quadratures are \Delta^2 \hatq_+=0.73(1), or 1.37(6)-1.37(6) dB. A detailed experimental study of the noise behavior as a function of pump power is presented, and discrepancies with theory are discussed.Comment: 9 pages, 6 figs. Important reference for readers of quant-ph/0610197. J. Opt. Soc. Am. B, Feature Issue on Optical Quantum-Information Science, doc. ID 70938 (posted 5 September 2006, in press

    The conversion of phase to amplitude fluctuations of a light beam by an optical cavity

    Full text link
    Very low intensity and phase fluctuations are present in a bright light field such as a laser beam. These subtle quantum fluctuations may be used to encode quantum information. Although intensity is easily measured with common photodetectors, accessing the phase information requires interference experiments. We introduce one such technique, the rotation of the noise ellipse of light, which employs an optical cavity to achieve the conversion of phase to intensity fluctuations. We describe the quantum noise of light and how it can be manipulated by employing an optical resonance technique and compare it to similar techniques, such as Pound-Drever-Hall laser stabilization and homodyne detection

    The Massive Hosts of Radio Galaxies Across Cosmic Time

    Get PDF
    We present the results of a comprehensive Spitzer survey of 69 radio galaxies across 1<z<5.2. Using IRAC (3.6-8.0um), IRS (16um) and MIPS (24-160um) imaging, we decompose the rest-frame optical to infrared spectral energy distributions into stellar, AGN, and dust components and determine the contribution of host galaxy stellar emission at rest-frame H-band. Stellar masses derived from rest-frame near-IR data, where AGN and young star contributions are minimized, are significantly more reliable than those derived from rest-frame optical and UV data. We find that the fraction of emitted light at rest-frame H-band from stars is >60% for ~75% the high redshift radio galaxies. As expected from unified models of AGN, the stellar fraction of the rest-frame H-band luminosity has no correlation with redshift, radio luminosity, or rest-frame mid-IR (5um) luminosity. Additionally, while the stellar H-band luminosity does not vary with stellar fraction, the total H-band luminosity anti-correlates with the stellar fraction as would be expected if the underlying hosts of these radio galaxies comprise a homogeneous population. The resultant stellar luminosities imply stellar masses of 10^{11-11.5}Msun even at the highest redshifts. Powerful radio galaxies tend to lie in a similar region of mid-IR color-color space as unobscured AGN, despite the stellar contribution to their mid-IR SEDs at shorter-wavelengths. The mid-IR luminosities alone classify most HzRGs as LIRGs or ULIRGs with even higher total-IR luminosities. As expected, these exceptionally high mid-IR luminosities are consistent with an obscured, highly-accreting AGN. We find a weak correlation of stellar mass with radio luminosity.Comment: 63 pages, 14 figures, accepted for publication in ApJ

    Multiplicity dependence of jet-like two-particle correlations in p-Pb collisions at sNN\sqrt{s_{NN}} = 5.02 TeV

    Full text link
    Two-particle angular correlations between unidentified charged trigger and associated particles are measured by the ALICE detector in p-Pb collisions at a nucleon-nucleon centre-of-mass energy of 5.02 TeV. The transverse-momentum range 0.7 <pT,assoc<pT,trig< < p_{\rm{T}, assoc} < p_{\rm{T}, trig} < 5.0 GeV/cc is examined, to include correlations induced by jets originating from low momen\-tum-transfer scatterings (minijets). The correlations expressed as associated yield per trigger particle are obtained in the pseudorapidity range η<0.9|\eta|<0.9. The near-side long-range pseudorapidity correlations observed in high-multiplicity p-Pb collisions are subtracted from both near-side short-range and away-side correlations in order to remove the non-jet-like components. The yields in the jet-like peaks are found to be invariant with event multiplicity with the exception of events with low multiplicity. This invariance is consistent with the particles being produced via the incoherent fragmentation of multiple parton--parton scatterings, while the yield related to the previously observed ridge structures is not jet-related. The number of uncorrelated sources of particle production is found to increase linearly with multiplicity, suggesting no saturation of the number of multi-parton interactions even in the highest multiplicity p-Pb collisions. Further, the number scales in the intermediate multiplicity region with the number of binary nucleon-nucleon collisions estimated with a Glauber Monte-Carlo simulation.Comment: 23 pages, 6 captioned figures, 1 table, authors from page 17, published version, figures at http://aliceinfo.cern.ch/ArtSubmission/node/161

    Charge separation relative to the reaction plane in Pb-Pb collisions at sNN=2.76\sqrt{s_{\rm NN}}= 2.76 TeV

    Get PDF
    Measurements of charge dependent azimuthal correlations with the ALICE detector at the LHC are reported for Pb-Pb collisions at sNN=2.76\sqrt{s_{\rm NN}} = 2.76 TeV. Two- and three-particle charge-dependent azimuthal correlations in the pseudo-rapidity range η<0.8|\eta| < 0.8 are presented as a function of the collision centrality, particle separation in pseudo-rapidity, and transverse momentum. A clear signal compatible with a charge-dependent separation relative to the reaction plane is observed, which shows little or no collision energy dependence when compared to measurements at RHIC energies. This provides a new insight for understanding the nature of the charge dependent azimuthal correlations observed at RHIC and LHC energies.Comment: 12 pages, 3 captioned figures, authors from page 2 to 6, published version, figures at http://aliceinfo.cern.ch/ArtSubmission/node/286
    corecore