25 research outputs found

    Cholesterol and Its Derivatives: Multifaceted Players in Breast Cancer Progression

    Get PDF
    Cholesterol is an essential lipid primarily synthesized in the liver through the mevalonate pathway. Besides being a precursor of steroid hormones, bile acid, and vitamin D, it is an essential structural component of cell membranes, is enriched in membrane lipid rafts, and plays a key role in intracellular signal transduction. The lipid homeostasis is finely regulated end appears to be impaired in several types of tumors, including breast cancer. In this review, we will analyse the multifaceted roles of cholesterol and its derivatives in breast cancer progression. As an example of the bivalent role of cholesterol in the cell membrane of cancer cells, on the one hand, it reduces membrane fluidity, which has been associated with a more aggressive tumor phenotype in terms of cell motility and migration, leading to metastasis formation. On the other hand, it makes the membrane less permeable to small water-soluble molecules that would otherwise freely cross, resulting in a loss of chemotherapeutics permeability. Regarding cholesterol derivatives, a lower vitamin D is associated with an increased risk of breast cancer, while steroid hormones, coupled with the overexpression of their receptors, play a crucial role in breast cancer progression. Despite the role of cholesterol and derivatives molecules in breast cancer development is still controversial, the use of cholesterol targeting drugs like statins and zoledronic acid appears as a challenging promising tool for breast cancer treatment

    The Scaffold Protein p140Cap as a Molecular Hub for Limiting Cancer Progression: A New Paradigm in Neuroblastoma

    Get PDF
    Neuroblastoma, the most common extra-cranial pediatric solid tumor, is responsible for 9–15% of all pediatric cancer deaths. Its intrinsic heterogeneity makes it difficult to successfully treat, resulting in overall survival of 50% for half of the patients. Here we analyze the role in neuroblastoma of the adaptor protein p140Cap, encoded by the SRCIN1 gene. RNA-Seq profiles of a large cohort of neuroblastoma patients show that SRCIN1 mRNA levels are an independent risk factor inversely correlated to disease aggressiveness. In high-risk patients, SRCIN1 was frequently altered by hemizygous deletion, copy-neutral loss of heterozygosity, or disruption. Functional assays demonstrated that p140Cap is causal in dampening both Src and Jak2 kinase activation and STAT3 phosphorylation. Moreover, p140Cap expression decreases in vitro migration and anchorage-independent cell growth, and impairs in vivo tumor progression, in terms of tumor volume and number of spontaneous lung metastasis. p140Cap also contributes to an increased sensitivity of neuroblastoma cells to chemotherapy drugs and to the combined usage of doxorubicin and etoposide with Src inhibitors. Overall, we provide the first evidence that SRCIN1/p140Cap is a new independent prognostic marker for patient outcome and treatment, with a causal role in curbing the aggressiveness of neuroblastoma. We highlight the potential clinical impact of SRCIN1/p140Cap expression in neuroblastoma tumors, in terms of reducing cytotoxic effects of chemotherapy, one of the main issues for pediatric tumor treatment

    p140Cap regulates the composition and localization of the NMDAR complex in synaptic lipid rafts

    Get PDF
    The NMDARs are key players in both physiological and pathologic synaptic plasticity because of their involvement in many aspects of neuronal transmission as well as learning and memory. The contribution in these events of different types of GluN2A-interacting pro-teins is still unclear. The p140Cap scaffold protein acts as a hub for postsynaptic complexes relevant to psychiatric and neurologic dis-orders and regulates synaptic functions, such as the stabilization of mature dendritic spine, memory consolidation, LTP, and LTD. Here we demonstrate that p140Cap directly binds the GluN2A subunit of NMDAR and modulates GluN2A-associated molecular net-work. Indeed, in p140Cap KO male mice, GluN2A is less associated with PSD95 both in ex vivo synaptosomes and in cultured hippo-campal neurons, and p140Cap expression in KO neurons can rescue GluN2A and PSD95 colocalization. p140Cap is crucial in the recruitment of GluN2A-containing NMDARs and, consequently, in regulating NMDARs' intrinsic properties. p140Cap is associated to synaptic lipid-raft (LR) and to soluble postsynaptic membranes, and GluN2A and PSD95 are less recruited into synaptic LR of p140Cap KO male mice. Gated-stimulated emission depletion microscopy on hippocampal neurons confirmed that p140Cap is required for embedding GluN2A clusters in LR in an activity-dependent fashion. In the synaptic compartment, p140Cap influences the association between GluN2A and PSD95 and modulates GluN2A enrichment into LR. Overall, such increase in these membrane domains rich in signaling molecules results in improved signal transduction efficiency

    p140Cap Controls Female Fertility in Mice Acting via Glutamatergic Afference on Hypothalamic Gonadotropin-Releasing Hormone Neurons.

    Get PDF
    p140Cap, encoded by the gene SRCIN1 (SRC kinase signaling inhibitor 1), is an adaptor/scaffold protein highly expressed in the mouse brain, participating in several pre- and post-synaptic mechanisms. p140Cap knock-out (KO) female mice show severe hypofertility, delayed puberty onset, altered estrus cycle, reduced ovulation, and defective production of luteinizing hormone and estradiol during proestrus. We investigated the role of p140Cap in the development and maturation of the hypothalamic gonadotropic system. During embryonic development, migration of Gonadotropin-Releasing Hormone (GnRH) neurons from the nasal placode to the forebrain in p140Cap KO mice appeared normal, and young p140Cap KO animals showed a normal number of GnRH-immunoreactive (-ir) neurons. In contrast, adult p140Cap KO mice showed a significant loss of GnRH-ir neurons and a decreased density of GnRH-ir projections in the median eminence, accompanied by reduced levels of GnRH and LH mRNAs in the hypothalamus and pituitary gland, respectively. We examined the number of kisspeptin (KP) neurons in the rostral periventricular region of the third ventricle, the number of KP-ir fibers in the arcuate nucleus, and the number of KP-ir punctae on GnRH neurons but we found no significant changes. Consistently, the responsiveness to exogenous KP in vivo was unchanged, excluding a cell-autonomous defect on the GnRH neurons at the level of KP receptor or its signal transduction. Since glutamatergic signaling in the hypothalamus is critical for both puberty onset and modulation of GnRH secretion, we examined the density of glutamatergic synapses in p140Cap KO mice and observed a significant reduction in the density of VGLUT-ir punctae both in the preoptic area and on GnRH neurons. Our data suggest that the glutamatergic circuitry in the hypothalamus is altered in the absence of p140Cap and is required for female fertility

    The diversity and evolution of pollination systems in large plant clades: Apocynaceae as a case study

    Get PDF
    Background and Aims Large clades of angiosperms are often characterized by diverse interactions with pollinators, but how these pollination systems are structured phylogenetically and biogeographically is still uncertain for most families. Apocynaceae is a clade of >5300 species with a worldwide distribution. A database representing >10 % of species in the family was used to explore the diversity of pollinators and evolutionary shifts in pollination systems across major clades and regions. Methods The database was compiled from published and unpublished reports. Plants were categorized into broad pollination systems and then subdivided to include bimodal systems. These were mapped against the five major divisions of the family, and against the smaller clades. Finally, pollination systems were mapped onto a phylogenetic reconstruction that included those species for which sequence data are available, and transition rates between pollination systems were calculated. Key Results Most Apocynaceae are insect pollinated with few records of bird pollination. Almost three-quarters of species are pollinated by a single higher taxon (e.g. flies or moths); 7 % have bimodal pollination systems, whilst the remaining approx. 20 % are insect generalists. The less phenotypically specialized flowers of the Rauvolfioids are pollinated by a more restricted set of pollinators than are more complex flowers within the Apocynoids + Periplocoideae + Secamonoideae + Asclepiadoideae (APSA) clade. Certain combinations of bimodal pollination systems are more common than others. Some pollination systems are missing from particular regions, whilst others are over-represented. Conclusions Within Apocynaceae, interactions with pollinators are highly structured both phylogenetically and biogeographically. Variation in transition rates between pollination systems suggest constraints on their evolution, whereas regional differences point to environmental effects such as filtering of certain pollinators from habitats. This is the most extensive analysis of its type so far attempted and gives important insights into the diversity and evolution of pollination systems in large clades

    Synaptic interactome mining reveals p140Cap as a new hub for PSD proteins involved in psychiatric and neurological disorders

    Get PDF
    Altered synaptic function has been associated with neurological and psychiatric conditions including intellectual disability, schizophrenia and autism spectrum disorder (ASD). Amongst the recently discovered synaptic proteins is p140Cap, an adaptor that localizes at dendritic spines and regulates their maturation and physiology. We recently showed that p140Cap knockout mice have cognitive deficits, impaired long-term potentiation (LTP) and long-term depression (LTD), and immature, filopodia-like dendritic spines. Only a few p140Cap interacting proteins have been identified in the brain and the molecular complexes and pathways underlying p140Cap synaptic function are largely unknown. Here, we isolated and characterized the p140Cap synaptic interactome by co-immunoprecipitation from crude mouse synaptosomes, followed by mass spectrometry-based proteomics. We identified 351 p140Cap interactors and found that they cluster to sub complexes mostly located in the postsynaptic density (PSD). p140Cap interactors converge on key synaptic processes, including transmission across chemical synapses, actin cytoskeleton remodeling and cell-cell junction organization. Gene co-expression data further support convergent functions: the p140Cap interactors are tightly co-expressed with each other and with p140Cap. Importantly, the p140Cap interactome and its co-expression network show strong enrichment in genes associated with schizophrenia, autism, bipolar disorder, intellectual disability and epilepsy, supporting synaptic dysfunction as a shared biological feature in brain diseases. Overall, our data provide novel insights into the molecular organization of the synapse and indicate that p140Cap acts as a hub for postsynaptic complexes relevant to psychiatric and neurological disorders
    corecore