181 research outputs found

    Pairing of bosons in the condensed state of the boson-fermion model

    Get PDF
    A two component model of negative U centers coupled with the Fermi sea of itinerant fermions is discussed in connection with high-temperature superconductivity of cuprates, and superfluidity of atomic fermions. We examine the phase transition and the condensed state of this boson-fermion model (BFM) beyond the ordinary mean-field approximation in two and three dimensions. No pairing of fermions and no condensation are found in two-dimensions for any symmetry of the order parameter. The expansion in the strength of the order parameter near the transition yields no linear homogeneous term in the Ginzburg-Landau-Gor'kov equation and a zero upper critical field in any-dimensional BFM, which indicates that previous mean-field discussions of the model are flawed. Normal and anomalous Green's functions are obtained diagrammatically and analytically in the condensed state of a simplest version of 3D BFM. A pairing of bosons analogous to the Cooper pairing of fermions is found. There are three coupled condensates in the model, described by the off-diagonal single-particle boson, pair-fermion and pair-boson fields. These results negate the common wisdom that the boson-fermion model is adequately described by the BCS theory at weak coupling.Comment: 7 pages, 4 figure

    The connected components of the space of Alexandrov surfaces

    Full text link
    Denote by A(Îş)\mathcal{A}(\kappa) the set of all compact Alexandrov surfaces with curvature bounded below by Îş\kappa without boundary, endowed with the topology induced by the Gromov-Hausdorff metric. We determine the connected components of A(Îş)\mathcal{A}(\kappa) and of its closure

    Breakdown of the Migdal-Eliashberg theory in the strong-coupling adiabatic regime

    Get PDF
    In view of some recent works on the role of vertex corrections in the electron-phonon system we readress an important question of the validity of the Migdal-Eliashberg theory. Based on the solution of the Holstein model and inverse coupling constant expansion, we argue that the standard Feynman-Dyson perturbation theory by Migdal and Eliashberg with or without vertex corrections cannot be applied if the electron-phonon coupling constant λ\lambda is larger than 1 for any ratio of the phonon and Fermi energies. In the extreme adiabatic limit of the Holstein model electrons collapse into self-trapped small polarons or bipolarons due to spontaneous translational-symmetry breaking when λ\lambda is between 0.5 and 1.3 (depending on the lattice dimensionality). With the increasing phonon frequency the region of the applicability of the theory shrinks to lower values of the coupling constant.Comment: 4 pages, 1 figur

    Theory of double resonance magnetometers based on atomic alignment

    Get PDF
    We present a theoretical study of the spectra produced by optical-radio-frequency double resonance devices, in which resonant linearly polarized light is used in the optical pumping and detection processes. We extend previous work by presenting algebraic results which are valid for atomic states with arbitrary angular momenta, arbitrary rf intensities, and arbitrary geometries. The only restriction made is the assumption of low light intensity. The results are discussed in view of their use in optical magnetometers

    Detection of radio frequency magnetic fields using nonlinear magneto-optical rotation

    Get PDF
    We describe a room-temperature alkali-metal atomic magnetometer for detection of small, high frequency magnetic fields. The magnetometer operates by detecting optical rotation due to the precession of an aligned ground state in the presence of a small oscillating magnetic field. The resonance frequency of the magnetometer can be adjusted to any desired value by tuning the bias magnetic field. We demonstrate a sensitivity of 100 pG/Hz (RMS)100\thinspace{\rm pG/\sqrt{Hz}\thinspace(RMS)} in a 3.5 cm diameter, paraffin coated cell. Based on detection at the photon shot-noise limit, we project a sensitivity of 20 pG/Hz (RMS)20\thinspace{\rm pG/\sqrt{Hz}\thinspace(RMS)}.Comment: 6 pages, 6 figure

    Profiles of inflated surfaces

    Get PDF
    We study the shape of inflated surfaces introduced in \cite{B1} and \cite{P1}. More precisely, we analyze profiles of surfaces obtained by inflating a convex polyhedron, or more generally an almost everywhere flat surface, with a symmetry plane. We show that such profiles are in a one-parameter family of curves which we describe explicitly as the solutions of a certain differential equation.Comment: 13 pages, 2 figure

    The Necessary and Sufficient Conditions for Representing Lipschitz Bivariate Functions as a Difference of Two Convex Functions

    Full text link
    In the article the necessary and sufficient conditions for a representation of Lipschitz function of two variables as a difference of two convex functions are formulated. An algorithm of this representation is given. The outcome of this algorithm is a sequence of pairs of convex functions that converge uniformly to a pair of convex functions if the conditions of the formulated theorems are satisfied. A geometric interpretation is also given
    • …
    corecore