70 research outputs found
Deformation analysis with Total Least Squares
Deformation analysis is one of the main research fields in geodesy. Deformation analysis process comprises measurement and analysis phases. Measurements can be collected using several techniques. The output of the evaluation of the measurements is mainly point positions. In the deformation analysis phase, the coordinate changes in the point positions are investigated. Several models or approaches can be employed for the analysis. One approach is based on a Helmert or similarity coordinate transformation where the displacements and the respective covariance matrix are transformed into a unique datum. Traditionally a Least Squares (LS) technique is used for the transformation procedure. Another approach that could be introduced as an alternative methodology is the Total Least Squares (TLS) that is considerably a new approach in geodetic applications. In this study, in order to determine point displacements, 3-D coordinate transformations based on the Helmert transformation model were carried out individually by the Least Squares (LS) and the Total Least Squares (TLS), respectively. The data used in this study was collected by GPS technique in a landslide area located nearby Istanbul. The results obtained from these two approaches have been compared
CN in prestellar cores
Determining the structure of and the velocity field in prestellar cores is
essential to understanding protostellar evolution.} {We have observed the dense
prestellar cores L 1544 and L 183 in the rotational transition of
CN and \thcn in order to test whether CN is depleted in the high--density
nuclei of these cores.} {We have used the IRAM 30 m telescope to observe along
the major and minor axes of these cores. We compare these observations with the
1 mm dust emission, which serves as a proxy for the hydrogen column
density.}{We find that while CN\jone is optically thick, the distribution of
\thcn\jone intensity follows the dust emission well, implying that the CN
abundance does not vary greatly with density. We derive an abundance ratio of
\rm [CN]/[\hh]=\dix{-9} in L 183 and 1-3\tdix{-9} in L 1544, which, in the
case of L 183, is similar to previous estimates obtained by sampling
lower--density regions of the core.}{We conclude that CN is not depleted
towards the high--density peaks of these cores and thus behaves like the
N-containing molecules \nnhp and \nhhh. CN is, to our knowledge, the first
C--containing molecule to exhibit this characteristic.Comment: Accepted for publication in A&A Letter
HIFI spectroscopy of low-level water transitions in M82
We present observations of the rotational ortho-water ground transition, the
two lowest para-water transitions, and the ground transition of ionised
ortho-water in the archetypal starburst galaxy M82, performed with the HIFI
instrument on the Herschel Space Observatory. These observations are the first
detections of the para-H2O(111-000) (1113\,GHz) and ortho-H2O+(111-000)
(1115\,GHz) lines in an extragalactic source. All three water lines show
different spectral line profiles, underlining the need for high spectral
resolution in interpreting line formation processes. Using the line shape of
the para-H2O(111-000) and ortho-H2O+(111-000) absorption profile in conjunction
with high spatial resolution CO observations, we show that the (ionised) water
absorption arises from a ~2000 pc^2 region within the HIFI beam located about
~50 pc east of the dynamical centre of the galaxy. This region does not
coincide with any of the known line emission peaks that have been identified in
other molecular tracers, with the exception of HCO. Our data suggest that water
and ionised water within this region have high (up to 75%) area-covering
factors of the underlying continuum. This indicates that water is not
associated with small, dense cores within the ISM of M82 but arises from a more
widespread diffuse gas component.Comment: 5 pages, 4 figures. Accepted for publication in A&
CCH in prestellar cores
We study the abundance of CCH in prestellar cores both because of its role in
the chemistry and because it is a potential probe of the magnetic field. We
also consider the non-LTE behaviour of the N=1-0 and N=2-1 transitions of CCH
and improve current estimates of the spectroscopic constants of CCH. We used
the IRAM 30m radiotelescope to map the N=1-0 and N=2-1 transitions of CCH
towards the prestellar cores L1498 and CB246. Towards CB246, we also mapped the
1.3 mm dust emission, the J=1-0 transition of N2H+ and the J=2-1 transition of
C18O. We used a Monte Carlo radiative transfer program to analyse the CCH
observations of L1498. We derived the distribution of CCH column densities and
compared with the H2 column densities inferred from dust emission. We find that
while non-LTE intensity ratios of different components of the N=1-0 and N=2-1
lines are present, they are of minor importance and do not impede CCH column
density determinations based upon LTE analysis. Moreover, the comparison of our
Monte-Carlo calculations with observations suggest that the non-LTE deviations
can be qualitatively understood. For L1498, our observations in conjunction
with the Monte Carlo code imply a CCH depletion hole of radius 9 x 10^{16} cm
similar to that found for other C-containing species. We briefly discuss the
significance of the observed CCH abundance distribution. Finally, we used our
observations to provide improved estimates for the rest frequencies of all six
components of the CCH(1-0) line and seven components of CCH(2-1). Based on
these results, we compute improved spectroscopic constants for CCH. We also
give a brief discussion of the prospects for measuring magnetic field strengths
using CCH.Comment: 14 pages, 13 figures, to be published in Astronomy and Astrophysic
HIFI observations of warm gas in DR21: Shock versus radiative heating
The molecular gas in the DR21 massive star formation region is known to be
affected by the strong UV field from the central star cluster and by a fast
outflow creating a bright shock. The relative contribution of both heating
mechanisms is the matter of a long debate. By better sampling the excitation
ladder of various tracers we provide a quantitative distinction between the
different heating mechanisms. HIFI observations of mid-J transitions of CO and
HCO+ isotopes allow us to bridge the gap in excitation energies between
observations from the ground, characterizing the cooler gas, and existing ISO
LWS spectra, constraining the properties of the hot gas. Comparing the detailed
line profiles allows to identify the physical structure of the different
components. In spite of the known shock-excitation of H2 and the clearly
visible strong outflow, we find that the emission of all lines up to > 2 THz
can be explained by purely radiative heating of the material. However, the new
Herschel/HIFI observations reveal two types of excitation conditions. We find
hot and dense clumps close to the central cluster, probably dynamically
affected by the outflow, and a more widespread distribution of cooler, but
nevertheless dense, molecular clumps.Comment: Accepted for publication by A&
Herschel observations in the ultracompact HII region Mon R2: Water in dense Photon-dominated regions (PDRs)
Mon R2, at a distance of 830 pc, is the only ultracompact HII region (UC HII)
where the photon-dominated region (PDR) between the ionized gas and the
molecular cloud can be resolved with Herschel. HIFI observations of the
abundant compounds 13CO, C18O, o-H2-18O, HCO+, CS, CH, and NH have been used to
derive the physical and chemical conditions in the PDR, in particular the water
abundance. The 13CO, C18O, o-H2-18O, HCO+ and CS observations are well
described assuming that the emission is coming from a dense (n=5E6 cm-3,
N(H2)>1E22 cm-2) layer of molecular gas around the UC HII. Based on our
o-H2-18O observations, we estimate an o-H2O abundance of ~2E-8. This is the
average ortho-water abundance in the PDR. Additional H2-18O and/or water lines
are required to derive the water abundance profile. A lower density envelope
(n~1E5 cm-3, N(H2)=2-5E22 cm-2) is responsible for the absorption in the NH
1_1-0_2 line. The emission of the CH ground state triplet is coming from both
regions with a complex and self-absorbed profile in the main component. The
radiative transfer modeling shows that the 13CO and HCO+ line profiles are
consistent with an expansion of the molecular gas with a velocity law, v_e =0.5
x (r/Rout)^{-1} km/s, although the expansion velocity is poorly constrained by
the observations presented here.Comment: 4 pages, 5 figure
HIFI spectroscopy of low-level water transitions in M82
We present observations of the rotational ortho-water ground transition, the
two lowest para-water transitions, and the ground transition of ionised
ortho-water in the archetypal starburst galaxy M82, performed with the HIFI
instrument on the Herschel Space Observatory. These observations are the first
detections of the para-H2O(111-000) (1113\,GHz) and ortho-H2O+(111-000)
(1115\,GHz) lines in an extragalactic source. All three water lines show
different spectral line profiles, underlining the need for high spectral
resolution in interpreting line formation processes. Using the line shape of
the para-H2O(111-000) and ortho-H2O+(111-000) absorption profile in conjunction
with high spatial resolution CO observations, we show that the (ionised) water
absorption arises from a ~2000 pc^2 region within the HIFI beam located about
~50 pc east of the dynamical centre of the galaxy. This region does not
coincide with any of the known line emission peaks that have been identified in
other molecular tracers, with the exception of HCO. Our data suggest that water
and ionised water within this region have high (up to 75%) area-covering
factors of the underlying continuum. This indicates that water is not
associated with small, dense cores within the ISM of M82 but arises from a more
widespread diffuse gas component.Comment: 5 pages, 4 figures. Accepted for publication in A&
The origin of the [C II] emission in the S140 PDRs - new insights from HIFI
Using Herschel's HIFI instrument we have observed [C II] along a cut through
S140 and high-J transitions of CO and HCO+ at two positions on the cut,
corresponding to the externally irradiated ionization front and the embedded
massive star forming core IRS1. The HIFI data were combined with available
ground-based observations and modeled using the KOSMA-tau model for photon
dominated regions. Here we derive the physical conditions in S140 and in
particular the origin of [C II] emission around IRS1. We identify three
distinct regions of [C II] emission from the cut, one close to the embedded
source IRS1, one associated with the ionization front and one further into the
cloud. The line emission can be understood in terms of a clumpy model of
photon-dominated regions. At the position of IRS1, we identify at least two
distinct components contributing to the [C II] emission, one of them a small,
hot component, which can possibly be identified with the irradiated outflow
walls. This is consistent with the fact that the [C II] peak at IRS1 coincides
with shocked H2 emission at the edges of the outflow cavity. We note that
previously available observations of IRS1 can be well reproduced by a
single-component KOSMA-tau model. Thus it is HIFI's unprecedented spatial and
spectral resolution, as well as its sensitivity which has allowed us to uncover
an additional hot gas component in the S140 region.Comment: accepted for publication in Astronomy and Astrophysics (HIFI special
issue
Gas morphology and energetics at the surface of PDRs: new insights with Herschel observations of NGC 7023
We investigate the physics and chemistry of the gas and dust in dense
photon-dominated regions (PDRs), along with their dependence on the
illuminating UV field. Using Herschel-HIFI observations, we study the gas
energetics in NGC 7023 in relation to the morphology of this nebula. NGC 7023
is the prototype of a PDR illuminated by a B2V star and is one of the key
targets of Herschel. Our approach consists in determining the energetics of the
region by combining the information carried by the mid-IR spectrum (extinction
by classical grains, emission from very small dust particles) with that of the
main gas coolant lines. In this letter, we discuss more specifically the
intensity and line profile of the 158 micron (1901 GHz) [CII] line measured by
HIFI and provide information on the emitting gas. We show that both the [CII]
emission and the mid-IR emission from polycyclic aromatic hydrocarbons (PAHs)
arise from the regions located in the transition zone between atomic and
molecular gas. Using the Meudon PDR code and a simple transfer model, we find
good agreement between the calculated and observed [CII] intensities. HIFI
observations of NGC 7023 provide the opportunity to constrain the energetics at
the surface of PDRs. Future work will include analysis of the main coolant line
[OI] and use of a new PDR model that includes PAH-related species.Comment: Accepted for publication in Astronomy and Astrophysics Letters
(Herschel HIFI special issue), 5 pages, 5 figure
- …