34 research outputs found

    Feasibility studies of the time-like proton electromagnetic form factor measurements with PANDA at FAIR

    Full text link
    The possibility of measuring the proton electromagnetic form factors in the time-like region at FAIR with the \PANDA detector is discussed. Detailed simulations on signal efficiency for the annihilation of pˉ+p\bar p +p into a lepton pair as well as for the most important background channels have been performed. It is shown that precision measurements of the differential cross section of the reaction pˉ+pe++e\bar p +p \to e^++ e^- can be obtained in a wide angular and kinematical range. The individual determination of the moduli of the electric and magnetic proton form factors will be possible up to a value of momentum transfer squared of q214q^2\simeq 14 (GeV/c)2^2. The total pˉ+pe++e\bar p +p\to e^++e^- cross section will be measured up to q228q^2\simeq 28 (GeV/c)2^2. The results obtained from simulated events are compared to the existing data. Sensitivity to the two photons exchange mechanism is also investigated.Comment: 12 pages, 4 tables, 8 figures Revised, added details on simulations, 4 tables, 9 figure

    Challenges in QCD matter physics - The Compressed Baryonic Matter experiment at FAIR

    Full text link
    Substantial experimental and theoretical efforts worldwide are devoted to explore the phase diagram of strongly interacting matter. At LHC and top RHIC energies, QCD matter is studied at very high temperatures and nearly vanishing net-baryon densities. There is evidence that a Quark-Gluon-Plasma (QGP) was created at experiments at RHIC and LHC. The transition from the QGP back to the hadron gas is found to be a smooth cross over. For larger net-baryon densities and lower temperatures, it is expected that the QCD phase diagram exhibits a rich structure, such as a first-order phase transition between hadronic and partonic matter which terminates in a critical point, or exotic phases like quarkyonic matter. The discovery of these landmarks would be a breakthrough in our understanding of the strong interaction and is therefore in the focus of various high-energy heavy-ion research programs. The Compressed Baryonic Matter (CBM) experiment at FAIR will play a unique role in the exploration of the QCD phase diagram in the region of high net-baryon densities, because it is designed to run at unprecedented interaction rates. High-rate operation is the key prerequisite for high-precision measurements of multi-differential observables and of rare diagnostic probes which are sensitive to the dense phase of the nuclear fireball. The goal of the CBM experiment at SIS100 (sqrt(s_NN) = 2.7 - 4.9 GeV) is to discover fundamental properties of QCD matter: the phase structure at large baryon-chemical potentials (mu_B > 500 MeV), effects of chiral symmetry, and the equation-of-state at high density as it is expected to occur in the core of neutron stars. In this article, we review the motivation for and the physics programme of CBM, including activities before the start of data taking in 2022, in the context of the worldwide efforts to explore high-density QCD matter.Comment: 15 pages, 11 figures. Published in European Physical Journal

    Feasibility studies of time-like proton electromagnetic form factors at PANDA at FAIR

    Get PDF
    Simulation results for future measurements of electromagnetic proton form factors at \PANDA (FAIR) within the PandaRoot software framework are reported. The statistical precision with which the proton form factors can be determined is estimated. The signal channel pˉpe+e\bar p p \to e^+ e^- is studied on the basis of two different but consistent procedures. The suppression of the main background channel, i.e.\textit{i.e.} pˉpπ+π\bar p p \to \pi^+ \pi^-, is studied. Furthermore, the background versus signal efficiency, statistical and systematical uncertainties on the extracted proton form factors are evaluated using two different procedures. The results are consistent with those of a previous simulation study using an older, simplified framework. However, a slightly better precision is achieved in the PandaRoot study in a large range of momentum transfer, assuming the nominal beam conditions and detector performance

    Квантово-химическое моделирование кортизон-фуллереноловых агентов терапии онкологических заболеваний

    Get PDF
    In order to therapeutically destroy oncological neoplasms, chemotherapy or radiotherapy is usually applied, and in isotope medicine – short-lived radio nuclides are injected into the tumor (59Fe, 90Y, 95Zr, 99mTc, 106Ru, 114*In, 147Eu, 148Eu, 155Eu, 170Tm, 188Re, 210Po, 222Rn, 230U, 237Pu, 240Cm, 241Cm, 253Es). Binary (or neutron capture) therapy is a technology developed for the selective effect on malignant tumors using drugs that are tropic to tumors and contain non-radioactive nuclides (10B, 113Cd, 157Gd at al.). Triadic therapy involves the sequential introduction into the body of a combination of two or more separately inactive and harmless components, which are tropic to tumor tissues and capable of selectively accumulating in them or chemically interacting with each other and destroying tumor neoplasms under the action of certain sensitizing external influences. The aim of this work is quantum-chemical simulation of the electronic structure and analysis of the thermodynamic stability of new cortisone-fullerenol agents for the treatment of tumor neoplasms. The need for preliminary studies of modeling such objects is due to the very high labor intensity, cost and complexity of their practical production.С целью терапевтического уничтожения онкологических новообразований обычно применяют химиотерапию или лучевую, а в изотопной медицине – вводят в опухоль соответствующие короткоживущие радионуклиды (59Fe, 90Y, 95Zr, 99mTc, 106Ru, 114*In, 147Eu, 148Eu, 155Eu, 170Tm, 188Re, 210Po, 222Rn, 230U, 237Pu, 240Cm, 241Cm, 253Es). Бинарная (или нейтронозахватная) – технология, разработанная для избирательного воздействия на злокачественные новообразования и использующая тропные к опухолям препараты, содержащие нерадиоактивные нуклиды (10B, 113Cd, 157Gd и др.). Триадная – последовательное введение в организм комбинации из двух и более по отдельности неактивных и безвредных компонентов, тропных к опухолевым тканям и способных в них селективно накапливаться или вступать друг с другом в химическое взаимодействие и уничтожать опухолевые новообразования под действием определенных сенсибилизирующих внешних воздействий. В настоящей работе проведены квантово-химическое моделирование электронной структуры и анализ термодинамической устойчивости новых кортизон-фуллереноловых агентов терапии опухолевых новообразований. Необходимость предварительных исследований по моделированию такого рода объектов обусловлена очень высокой трудоемкостью, стоимостью и сложностью их практического получения

    Квантово-химическое моделирование доксорубицин-фуллереноловых агентов терапии онкологических заболеваний

    Get PDF
    In order to therapeutically destroy neoplasms, chemotherapy or radiotherapy is usually applied, and in isotope medicine short-lived radionuclides are injected into the tumor (59Fe, 90Y, 95Zr, 99mTc, 106Ru, 114*In, 147Eu, 148Eu, 155Eu, 170Tm, 177mLu, 188Re, 210Po, 222Rn, 230U, 237Pu, 240Cm, 241Cm, 253Es). Binary (or neutron capture) therapy is a technology designed to selectively treat malignant tumors and using drugs tropic to tumors containing non-radioactive nuclides (10B, 113Cd, 157Gd at al.). Triadic therapy is the sequential introduction into the body of a combination of two or more separately inactive and harmless components, tropic to tumor tissues and capable of selectively accumulating in them or entering into chemical interaction with each other and destroying tumor neoplasms under certain sensitizing external influences. The aim of this work is to quantum-chemically simulate the electronic structure and to analyze the thermodynamic stability of new doxorubicino-fullerenol agents for the treatment of tumor neoplasms. The need for preliminary studies on the modeling of such objects is due to the extremely high labor intensity, cost and complexity of their practical production.С целью терапевтического уничтожения злокачественных новообразований обычно применяют хирургическое вмешательство, химиоили лучевую терапию, а в изотопной медицине вводят в опухоль соответствующие короткоживущие радионуклиды (59Fe, 90Y, 95Zr, 99mTc, 106Ru, 114*In, 147Eu, 148Eu, 155Eu, 170Tm, 177mLu, 188Re, 210Po, 222Rn, 230U, 237Pu, 240Cm, 241Cm, 253Es). Бинарная (или нейтронозахватная) терапия – технология, разработанная для избирательного воздействия на злокачественные новообразования и использующая тропные к опухолям препараты, содержащие нерадиоактивные нуклиды (10B, 113Cd, 157Gd и др.). Триадная терапия – последовательное введение в организм комбинации из двух и более по отдельности неактивных и безвредных компонентов тропных к опухолевым тканям и способных в них селективно накапливаться или вступать друг с другом в химическое взаимодействие и уничтожать опухолевые клетки под действием определенных сенсибилизирующих внешних воздействий. Цель работы – квантово-химическое моделирование электронной структуры и анализ термодинамической устойчивости новых доксорубицин-фуллереноловых агентов терапии злокачественных новообразований. Необходимость предварительных исследований по моделированию такого рода объектов обусловлена чрезвычайно высокой трудоемкостью, стоимостью и сложностью их практического получения

    Study of doubly strange systems using stored antiprotons

    Get PDF
    Bound nuclear systems with two units of strangeness are still poorly known despite their importance for many strong interaction phenomena. Stored antiprotons beams in the GeV range represent an unparalleled factory for various hyperon-antihyperon pairs. Their outstanding large production probability in antiproton collisions will open the floodgates for a series of new studies of systems which contain two or even more units of strangeness at the P‾ANDA experiment at FAIR. For the first time, high resolution γ-spectroscopy of doubly strange ΛΛ-hypernuclei will be performed, thus complementing measurements of ground state decays of ΛΛ-hypernuclei at J-PARC or possible decays of particle unstable hypernuclei in heavy ion reactions. High resolution spectroscopy of multistrange Ξ−-atoms will be feasible and even the production of Ω−-atoms will be within reach. The latter might open the door to the |S|=3 world in strangeness nuclear physics, by the study of the hadronic Ω−-nucleus interaction. For the first time it will be possible to study the behavior of Ξ‾+ in nuclear systems under well controlled conditions

    Experimental access to Transition Distribution Amplitudes with the P̄ANDA experiment at FAIR

    Full text link
    corecore