93 research outputs found

    Cancer cells exploit an orphan RNA to drive metastatic progression.

    Get PDF
    Here we performed a systematic search to identify breast-cancer-specific small noncoding RNAs, which we have collectively termed orphan noncoding RNAs (oncRNAs). We subsequently discovered that one of these oncRNAs, which originates from the 3' end of TERC, acts as a regulator of gene expression and is a robust promoter of breast cancer metastasis. This oncRNA, which we have named T3p, exerts its prometastatic effects by acting as an inhibitor of RISC complex activity and increasing the expression of the prometastatic genes NUPR1 and PANX2. Furthermore, we have shown that oncRNAs are present in cancer-cell-derived extracellular vesicles, raising the possibility that these circulating oncRNAs may also have a role in non-cell autonomous disease pathogenesis. Additionally, these circulating oncRNAs present a novel avenue for cancer fingerprinting using liquid biopsies

    The inner centromere is a biomolecular condensate scaffolded by the chromosomal passenger complex.

    Get PDF
    The inner centromere is a region on every mitotic chromosome that enables specific biochemical reactions that underlie properties, such as the maintenance of cohesion, the regulation of kinetochores and the assembly of specialized chromatin, that can resist microtubule pulling forces. The chromosomal passenger complex (CPC) is abundantly localized to the inner centromeres and it is unclear whether it is involved in non-kinase activities that contribute to the generation of these unique chromatin properties. We find that the borealin subunit of the CPC drives phase separation of the CPC in vitro at concentrations that are below those found on the inner centromere. We also provide strong evidence that the CPC exists in a phase-separated state at the inner centromere. CPC phase separation is required for its inner-centromere localization and function during mitosis. We suggest that the CPC combines phase separation, kinase and histone code-reading activities to enable the formation of a chromatin body with unique biochemical activities at the inner centromere

    Non-coding murine centromeric transcripts associate with and potentiate Aurora B kinase

    Get PDF
    Non-coding RNAs are emerging as key players in many fundamental biological processes, including specification of higher-order chromatin structure. We examined the implication of RNA transcribed from mouse centromeric minor satellite repeats in the formation and function of centromere-associated complexes. Here we show that the levels of minor satellite RNA vary during cell-cycle progression, peaking in G2/M phase, concomitant with accumulation of proteins of the chromosomal passenger complex near the centromere. Consistent with this, we describe that murine minor satellite RNA are components of CENP-A-associated centromeric fractions and associate with proteins of the chromosomal passenger complex Aurora B and Survivin at the onset of mitosis. Interactions of endogenous Aurora B with CENP-A and Survivin are sensitive to RNaseA. Likewise, the kinase activity of Aurora B requires an RNA component. More importantly, Aurora B kinase activity can be potentiated by minor satellite RNA. In addition, decreased Aurora B activity after RNA depletion can be specifically rescued by restitution of these transcripts. Together, our data provide new functional evidence for minor satellite transcripts as key partners and regulators of the mitotic kinase Aurora B

    Intrabody-mediated diverting of HP1Ξ² to the cytoplasm induces co-aggregation of H3-H4 histones and lamin-B receptor

    Get PDF
    Diverting a protein from its intracellular location is a unique property of intrabodies. To interfere with the intracellular traffic of heterochromatin protein 1Ξ² (HP1Ξ²) in living cells, we have generated a cytoplasmic targeted anti-HP1Ξ² intrabody, specifically directed against the C-terminal portion of the molecule. HP1Ξ² is a conserved component of mouse and human constitutive heterochromatin involved in diverse nuclear functions including gene silencing, DNA repair and nuclear membrane assembly. We found that the anti-HP1Ξ² intrabody sequesters HP1Ξ² into cytoplasmic aggregates, inhibiting its traffic to the nucleus. Lamin B receptor (LBR) and a subset of core histones (H3/H4) are also specifically co-sequestered in the cytoplasm of anti-HP1Ξ² intrabody-expressing cells. Methylated histone H3 at K9 (Me9H3), a marker of constitutive heterochromatin, is not affected by the anti-HP1Ξ² intrabody expression. Hyper-acetylating conditions completely dislodge H3 from HP1Ξ²:LBR containing aggregates. The expression of anti-HP1Ξ² scFv fragments induces apoptosis, associated with an alteration of nuclear morphology. Both these phenotypes are specifically rescued either by overexpression of recombinant full length HP1Ξ² or by HP1Ξ² mutant containing the chromoshadow domain, but not by recombinant LBR protein. The HP1Ξ²-chromodomain mutant, on the other hand, does not rescue the phenotypes, but does compete with LBR for binding to HP1Ξ². These findings provide new insights into the mode of action of cytoplasmic-targeted intrabodies and the interaction between HP1Ξ² and its binding partners involved in peripheral heterochromatin organisation

    Structural Basis of the Chromodomain of Cbx3 Bound to Methylated Peptides from Histone H1 and G9a

    Get PDF
    HP1 proteins are highly conserved heterochromatin proteins, which have been identified to be structural adapters assembling a variety of macromolecular complexes involved in regulation of gene expression, chromatin remodeling and heterochromatin formation. Much evidence shows that HP1 proteins interact with numerous proteins including methylated histones, histone methyltransferases and so on. Cbx3 is one of the paralogues of HP1 proteins, which has been reported to specifically recognize trimethylated histone H3K9 mark, and a consensus binding motif has been defined for the Cbx3 chromodomain.Here, we found that the Cbx3 chromodomain can bind to H1K26me2 and G9aK185me3 with comparable binding affinities compared to H3K9me3. We also determined the crystal structures of the human Cbx3 chromodomain in complex with dimethylated histone H1K26 and trimethylated G9aK185 peptides, respectively. The complex structures unveil that the Cbx3 chromodomain specifically bind methylated histone H1K26 and G9aK185 through a conserved mechanism.The Cbx3 chromodomain binds with comparable affinities to all of the methylated H3K9, H1K26 and G9aK185 peptides. It is suggested that Cbx3 may regulate gene expression via recognizing both histones and non-histone proteins

    INCENP-aurora B interactions modulate kinase activity and chromosome passenger complex localization

    Get PDF
    Dynamic localization of the chromosomal passenger complex (CPC) during mitosis is essential for its diverse functions. CPC targeting to centromeres involves interactions between Survivin, Borealin, and the inner centromere protein (CENP [INCENP]) N terminus. In this study, we investigate how interactions between the INCENP C terminus and aurora B set the level of kinase activity. Low levels of kinase activity, seen in INCENP-depleted cells or in cells expressing a mutant INCENP that cannot bind aurora B, are sufficient for a spindle checkpoint response when microtubules are absent but not against low dose taxol. Intermediate kinase activity levels obtained with an INCENP mutant that binds aurora B but cannot fully activate it are sufficient for a robust response against taxol, but cannot trigger CPC transfer from the chromosomes to the anaphase spindle midzone. This transfer requires significantly higher levels of aurora B activity. These experiments reveal that INCENP interactions with aurora B in vivo modulate the level of kinase activity, thus regulating CPC localization and functions during mitosis

    PREditOR: A synthetic biology approach to removing heterochromatin from cells

    Get PDF
    It is widely accepted that heterochromatin is necessary to maintain genomic stability. However, direct experimental evidence supporting this is slim. Previous studies using either enzyme inhibitors, gene knockout or knockdown studies all are subject to the caveat that drugs may have off-target effects and enzymes that modify chromatin proteins to support heterochromatin formation may also have numerous other cellular targets as well. Here, we describe PREditOR (protein reading and editing of residues), a synthetic biology approach that allows us to directly remove heterochromatin from cells without either drugs or global interference with gene function. We find that removal of heterochromatin perturbs mitotic progression and causes a dramatic increase in chromosome segregation defects, possibly as a result of interfering with the normal centromeric localization of the chromosomal passenger complex. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s10577-016-9539-3) contains supplementary material, which is available to authorized users
    • …
    corecore