143 research outputs found
Resultados parciales de condiciones clínicas en pacientes con aneurisma de aorta abdominal (AAA), intervenidos en un hospital de tercer nivel. Bogotá
Identificar condiciones clínicas de los pacientes con Aneurisma de Aorta Abdominal (AAA), intervenidas en un hospital de tercer nivel.Estudio retrospectivo longitudinal, muestreo no probabilístico de tipo censal.La localización más común de AAA fue en el segmento infrarrenal. La hipertensión arterial, EPOC y afecciones cardiacas representaron el 88% de las patologías asociadas y los ateromas, ACV isquémico, nefropatías, coagulopatia y diabetes el 12% de las patologías restantes, 29 pacientes (67%) presentaron masa abdominal alexamen; mortalidad global 35%.Los factores de riesgo están relacionados a la patología de AAA, los pacientes mayores de 70 años fueron el grupo con mayor riesgo en este estudio 67%, se evidenció mortalidad en 15 pacientes.Existe una estrecha asociación clínica entre la enfermedad coronaria y AAA, se confirmó la correlación entre factores de riesgo y AAA la enfermedad ateroesclerótica, edad avanzada, consumo de tabaco, sexo masculino e hipertensión arterial
Stellar Spin-Orbit Misalignment in a Multiplanet System
Stars hosting hot Jupiters are often observed to have high obliquities,
whereas stars with multiple co-planar planets have been seen to have low
obliquities. This has been interpreted as evidence that hot-Jupiter formation
is linked to dynamical disruption, as opposed to planet migration through a
protoplanetary disk. We used asteroseismology to measure a large obliquity for
Kepler-56, a red giant star hosting two transiting co-planar planets. These
observations show that spin-orbit misalignments are not confined to hot-Jupiter
systems. Misalignments in a broader class of systems had been predicted as a
consequence of torques from wide-orbiting companions, and indeed
radial-velocity measurements revealed a third companion in a wide orbit in the
Kepler-56 system.Comment: Accepted for publication in Science, published online on October 17
2013; PDF includes main article and supplementary materials (65 pages, 27
figures, 7 tables); v2: small correction to author lis
Gravity modes as a way to distinguish between hydrogen- and helium-burning red giant stars
Red giants are evolved stars that have exhausted the supply of hydrogen in
their cores and instead burn hydrogen in a surrounding shell. Once a red giant
is sufficiently evolved, the helium in the core also undergoes fusion.
Outstanding issues in our understanding of red giants include uncertainties in
the amount of mass lost at the surface before helium ignition and the amount of
internal mixing from rotation and other processes. Progress is hampered by our
inability to distinguish between red giants burning helium in the core and
those still only burning hydrogen in a shell. Asteroseismology offers a way
forward, being a powerful tool for probing the internal structures of stars
using their natural oscillation frequencies. Here we report observations of
gravity-mode period spacings in red giants that permit a distinction between
evolutionary stages to be made. We use high-precision photometry obtained with
the Kepler spacecraft over more than a year to measure oscillations in several
hundred red giants. We find many stars whose dipole modes show sequences with
approximately regular period spacings. These stars fall into two clear groups,
allowing us to distinguish unambiguously between hydrogen-shell-burning stars
(period spacing mostly about 50 seconds) and those that are also burning helium
(period spacing about 100 to 300 seconds).Comment: to appear as a Letter to Natur
Masses, radii, and orbits of small Kepler planets : The transition from gaseous to rocky planets
We report on the masses, sizes, and orbits of the planets orbiting 22 Kepler stars. There are 49 planet candidates around these stars, including 42 detected through transits and 7 revealed by precise Doppler measurements of the host stars. Based on an analysis of the Kepler brightness measurements, along with high-resolution imaging and spectroscopy, Doppler spectroscopy, and (for 11 stars) asteroseismology, we establish low false-positive probabilities (FPPs) for all of the transiting planets (41 of 42 have an FPP under 1%), and we constrain their sizes and masses. Most of the transiting planets are smaller than three times the size of Earth. For 16 planets, the Doppler signal was securely detected, providing a direct measurement of the planet's mass. For the other 26 planets we provide either marginal mass measurements or upper limits to their masses and densities; in many cases we can rule out a rocky composition. We identify six planets with densities above 5 g cm-3, suggesting a mostly rocky interior for them. Indeed, the only planets that are compatible with a purely rocky composition are smaller than 2 R ⊕. Larger planets evidently contain a larger fraction of low-density material (H, He, and H2O).Peer reviewedFinal Accepted Versio
Recommended from our members
A multicenter assessment of interreader reliability of LI-RADS version 2018 for MRI and CT
Background: Various limitations have impacted research evaluating reader agreement
for Liver Imaging-Reporting and Data System (LI-RADS).
Purpose: To assess reader agreement of LI-RADS in an international multi-center, multireader setting using scrollable images.
Materials and Methods: This retrospective study used de-identified clinical multiphase
CT and MRI examinations and reports with at least one untreated observation from six
institutions and three countries; only qualifying examinations were submitted.
Examination dates were October 2017 – August 2018 at the coordinating center. One
untreated observation per examination was randomly selected using observation
identifiers, and its clinically assigned features were extracted from the report. The
corresponding LI-RADS v2018 category was computed as a re-scored clinical read. Each
examination was randomly assigned to two of 43 research readers who independently
scored the observation. Agreement for an ordinal modified four-category LI-RADS scale
(LR-1/2, LR-3, LR-4, LR-5/M/tumor in vein) was computed using intra-class correlation
coefficients (ICC). Agreement was also computed for dichotomized malignancy (LR-4/LR5/LR-M/LR-tumor in vein), LR-5, and LR-M. Agreement was compared between researchversus-research reads and research-versus-clinical reads.
Results: 484 patients (mean age, 62 years ±10 [SD]; 156 women; 93 CT, 391 MRI) were
included. ICCs for ordinal LI-RADS, dichotomized malignancy, LR-5, and LR-M were 0.68
(95% CI: 0.62, 0.74), 0.63 (95% CI: 0.56, 0.71), 0.58 (95% CI: 0.50, 0.66), and 0.46 (95%
CI: 0.31, 0.61) respectively. Research-versus-research reader agreement was higher
than research-versus-clinical agreement for modified four-category LI-RADS (ICC, 0.68
vs. 0.62, P = .03) and for dichotomized malignancy (ICC, 0.63 vs. 0.53, P = .005), but not
for LR-5 (P = .14) or LR-M (P = .94).
Conclusion: There was moderate agreement for Liver Imaging-Reporting and Data
System v2018 overall. For some comparisons, research-versus-research reader
agreement was higher than research-versus-clinical reader agreement, indicating
differences between the clinical and research environments that warrant further study
Results From the Global Rheumatology Alliance Registry
Funding Information: We acknowledge financial support from the ACR and EULAR. The ACR and EULAR were not involved in the design and conduct of the study; collection, management, analysis, and interpretation of the data; preparation, review, or approval of the manuscript; and decision to submit the manuscript for publication. Publisher Copyright: © 2022 The Authors. ACR Open Rheumatology published by Wiley Periodicals LLC on behalf of American College of Rheumatology.Objective: Some patients with rheumatic diseases might be at higher risk for coronavirus disease 2019 (COVID-19) acute respiratory distress syndrome (ARDS). We aimed to develop a prediction model for COVID-19 ARDS in this population and to create a simple risk score calculator for use in clinical settings. Methods: Data were derived from the COVID-19 Global Rheumatology Alliance Registry from March 24, 2020, to May 12, 2021. Seven machine learning classifiers were trained on ARDS outcomes using 83 variables obtained at COVID-19 diagnosis. Predictive performance was assessed in a US test set and was validated in patients from four countries with independent registries using area under the curve (AUC), accuracy, sensitivity, and specificity. A simple risk score calculator was developed using a regression model incorporating the most influential predictors from the best performing classifier. Results: The study included 8633 patients from 74 countries, of whom 523 (6%) had ARDS. Gradient boosting had the highest mean AUC (0.78; 95% confidence interval [CI]: 0.67-0.88) and was considered the top performing classifier. Ten predictors were identified as key risk factors and were included in a regression model. The regression model that predicted ARDS with 71% (95% CI: 61%-83%) sensitivity in the test set, and with sensitivities ranging from 61% to 80% in countries with independent registries, was used to develop the risk score calculator. Conclusion: We were able to predict ARDS with good sensitivity using information readily available at COVID-19 diagnosis. The proposed risk score calculator has the potential to guide risk stratification for treatments, such as monoclonal antibodies, that have potential to reduce COVID-19 disease progression.publishersversionepub_ahead_of_prin
Structures Related to the Emplacement of Shallow-Level Intrusions
A systematic view of the vast nomenclature used to describe the structures of shallow-level intrusions is presented here. Structures are organised in four main groups, according to logical breaks in the timing of magma emplacement, independent of the scales of features: (1) Intrusion-related structures, formed as the magma is making space and then develops into its intrusion shape; (2) Magmatic flow-related structures, developed as magma moves with suspended crystals that are free to rotate; (3) Solid-state, flow-related structures that formed in portions of the intrusions affected by continuing flow of nearby magma, therefore considered to have a syn-magmatic, non-tectonic origin; (4) Thermal and fragmental structures, related to creation of space and impact on host materials. This scheme appears as a rational organisation, helpful in describing and interpreting the large variety of structures observed in shallow-level intrusions
Recommended from our members
Whole genome comparison of a large collection of mycobacteriophages reveals a continuum of phage genetic diversity
The bacteriophage population is large, dynamic, ancient, and genetically diverse. Limited genomic information shows that phage genomes are mosaic, and the genetic architecture of phage populations remains ill-defined. To understand the population structure of phages infecting a single host strain, we isolated, sequenced, and compared 627 phages of Mycobacterium smegmatis. Their genetic diversity is considerable, and there are 28 distinct genomic types (clusters) with related nucleotide sequences. However, amino acid sequence comparisons show pervasive genomic mosaicism, and quantification of inter-cluster and intra-cluster relatedness reveals a continuum of genetic diversity, albeit with uneven representation of different phages. Furthermore, rarefaction analysis shows that the mycobacteriophage population is not closed, and there is a constant influx of genes from other sources. Phage isolation and analysis was performed by a large consortium of academic institutions, illustrating the substantial benefits of a disseminated, structured program involving large numbers of freshman undergraduates in scientific discovery
Hyperoxemia and excess oxygen use in early acute respiratory distress syndrome : Insights from the LUNG SAFE study
Publisher Copyright: © 2020 The Author(s). Copyright: Copyright 2020 Elsevier B.V., All rights reserved.Background: Concerns exist regarding the prevalence and impact of unnecessary oxygen use in patients with acute respiratory distress syndrome (ARDS). We examined this issue in patients with ARDS enrolled in the Large observational study to UNderstand the Global impact of Severe Acute respiratory FailurE (LUNG SAFE) study. Methods: In this secondary analysis of the LUNG SAFE study, we wished to determine the prevalence and the outcomes associated with hyperoxemia on day 1, sustained hyperoxemia, and excessive oxygen use in patients with early ARDS. Patients who fulfilled criteria of ARDS on day 1 and day 2 of acute hypoxemic respiratory failure were categorized based on the presence of hyperoxemia (PaO2 > 100 mmHg) on day 1, sustained (i.e., present on day 1 and day 2) hyperoxemia, or excessive oxygen use (FIO2 ≥ 0.60 during hyperoxemia). Results: Of 2005 patients that met the inclusion criteria, 131 (6.5%) were hypoxemic (PaO2 < 55 mmHg), 607 (30%) had hyperoxemia on day 1, and 250 (12%) had sustained hyperoxemia. Excess FIO2 use occurred in 400 (66%) out of 607 patients with hyperoxemia. Excess FIO2 use decreased from day 1 to day 2 of ARDS, with most hyperoxemic patients on day 2 receiving relatively low FIO2. Multivariate analyses found no independent relationship between day 1 hyperoxemia, sustained hyperoxemia, or excess FIO2 use and adverse clinical outcomes. Mortality was 42% in patients with excess FIO2 use, compared to 39% in a propensity-matched sample of normoxemic (PaO2 55-100 mmHg) patients (P = 0.47). Conclusions: Hyperoxemia and excess oxygen use are both prevalent in early ARDS but are most often non-sustained. No relationship was found between hyperoxemia or excessive oxygen use and patient outcome in this cohort. Trial registration: LUNG-SAFE is registered with ClinicalTrials.gov, NCT02010073publishersversionPeer reviewe
Integrated genomic characterization of pancreatic ductal adenocarcinoma
We performed integrated genomic, transcriptomic, and proteomic profiling of 150 pancreatic ductal adenocarcinoma (PDAC) specimens, including samples with characteristic low neoplastic cellularity. Deep whole-exome sequencing revealed recurrent somatic mutations in KRAS, TP53, CDKN2A, SMAD4, RNF43, ARID1A, TGFβR2, GNAS, RREB1, and PBRM1. KRAS wild-type tumors harbored alterations in other oncogenic drivers, including GNAS, BRAF, CTNNB1, and additional RAS pathway genes. A subset of tumors harbored multiple KRAS mutations, with some showing evidence of biallelic mutations. Protein profiling identified a favorable prognosis subset with low epithelial-mesenchymal transition and high MTOR pathway scores. Associations of non-coding RNAs with tumor-specific mRNA subtypes were also identified. Our integrated multi-platform analysis reveals a complex molecular landscape of PDAC and provides a roadmap for precision medicine
- …