29 research outputs found
How can hackathons accelerate corporate innovation?
IFIP WG 5.7 International Conference, APMS 2018, Seoul, Korea, August 26-30, 2018, Proceedings, Part I In recent years, the way corporates innovate has changed significantly. Going from ‘behind closed doors’ innovation to open innovation where collaboration with outsiders is encouraged, companies are in the pursuit of more effective ways to accelerate their innovation outcomes. As a result, many companies are investing to create more entrepreneurial environments, which not only empower employees to proactively propose and test new ideas, but also reach beyond company walls to involve many others in the co-creation of new solutions. In this paper, we outline the most notable benefits of hackathons from the perspective of large organizations, and present the benefits and a methodology for organizing hackathons, i.e. competition-based events where participants work in small teams over a short period of time to ideate, design, rapidly prototype and test their ideas with a user-centric approach to solve a determined challenge. This paper also provides a brief insight into the CEMEX Hackathon, which was organized following the aforementioned methodology
Planck 2013 results X. Energetic particle effects: characterization, removal, and simulation
This paper presents the detection, interpretation and removal of the signal
resulting from interactions of high energy particles with the Planck High
Frequency Instrument (HFI). These interactions fall into two categories,
heating the 0.1 K bolometer plate and glitches in each detector time stream.
Glitch shapes are not simple single pole exponential decays and fall into a
three families. The glitch shape for each family has been characterized
empirically in flight data and removed from the detector time streams. The
spectrum of the count rate/unit energy is computed for each family and a
correspondence to where on the detector the particle hit is made. Most of the
detected glitches are from galactic protons incident on the Si die frame
supporting the micromachined bolometric detectors. At HFI, the particle flux is
~ 5 per square cm and per second and is dominated by protons incident on the
spacecraft with an energy >39 MeV, leading to a rate of typically one event per
second and per detector. Different categories of glitches have different
signature in timestreams. Two of the glitch types have a low amplitude
component that decays over nearly 1 second. This component produces an excess
noise if not properly removed from the time ordered data. We have used a glitch
detection and subtraction method based on the joint fit of population
templates. The application of this novel glitch removal method removes excess
noise from glitches. Using realistic simulations, we find this method does not
introduce signal bias.Comment: 23 pages; v2: author list complete
Common, low-frequency, rare, and ultra-rare coding variants contribute to COVID-19 severity
The combined impact of common and rare exonic variants in COVID-19 host genetics is currently insufficiently understood. Here, common and rare variants from whole-exome sequencing data of about 4000 SARS-CoV-2-positive individuals were used to define an interpretable machine-learning model for predicting COVID-19 severity. First, variants were converted into separate sets of Boolean features, depending on the absence or the presence of variants in each gene. An ensemble of LASSO logistic regression models was used to identify the most informative Boolean features with respect to the genetic bases of severity. The Boolean features selected by these logistic models were combined into an Integrated PolyGenic Score that offers a synthetic and interpretable index for describing the contribution of host genetics in COVID-19 severity, as demonstrated through testing in several independent cohorts. Selected features belong to ultra-rare, rare, low-frequency, and common variants, including those in linkage disequilibrium with known GWAS loci. Noteworthily, around one quarter of the selected genes are sex-specific. Pathway analysis of the selected genes associated with COVID-19 severity reflected the multi-organ nature of the disease. The proposed model might provide useful information for developing diagnostics and therapeutics, while also being able to guide bedside disease management. © 2021, The Author(s)
Rationale, study design, and analysis plan of the Alveolar Recruitment for ARDS Trial (ART): Study protocol for a randomized controlled trial
Background: Acute respiratory distress syndrome (ARDS) is associated with high in-hospital mortality. Alveolar recruitment followed by ventilation at optimal titrated PEEP may reduce ventilator-induced lung injury and improve oxygenation in patients with ARDS, but the effects on mortality and other clinical outcomes remain unknown. This article reports the rationale, study design, and analysis plan of the Alveolar Recruitment for ARDS Trial (ART). Methods/Design: ART is a pragmatic, multicenter, randomized (concealed), controlled trial, which aims to determine if maximum stepwise alveolar recruitment associated with PEEP titration is able to increase 28-day survival in patients with ARDS compared to conventional treatment (ARDSNet strategy). We will enroll adult patients with ARDS of less than 72 h duration. The intervention group will receive an alveolar recruitment maneuver, with stepwise increases of PEEP achieving 45 cmH(2)O and peak pressure of 60 cmH2O, followed by ventilation with optimal PEEP titrated according to the static compliance of the respiratory system. In the control group, mechanical ventilation will follow a conventional protocol (ARDSNet). In both groups, we will use controlled volume mode with low tidal volumes (4 to 6 mL/kg of predicted body weight) and targeting plateau pressure <= 30 cmH2O. The primary outcome is 28-day survival, and the secondary outcomes are: length of ICU stay; length of hospital stay; pneumothorax requiring chest tube during first 7 days; barotrauma during first 7 days; mechanical ventilation-free days from days 1 to 28; ICU, in-hospital, and 6-month survival. ART is an event-guided trial planned to last until 520 events (deaths within 28 days) are observed. These events allow detection of a hazard ratio of 0.75, with 90% power and two-tailed type I error of 5%. All analysis will follow the intention-to-treat principle. Discussion: If the ART strategy with maximum recruitment and PEEP titration improves 28-day survival, this will represent a notable advance to the care of ARDS patients. Conversely, if the ART strategy is similar or inferior to the current evidence-based strategy (ARDSNet), this should also change current practice as many institutions routinely employ recruitment maneuvers and set PEEP levels according to some titration method.Hospital do Coracao (HCor) as part of the Program 'Hospitais de Excelencia a Servico do SUS (PROADI-SUS)'Brazilian Ministry of Healt
A blood atlas of COVID-19 defines hallmarks of disease severity and specificity.
Treatment of severe COVID-19 is currently limited by clinical heterogeneity and incomplete description of specific immune biomarkers. We present here a comprehensive multi-omic blood atlas for patients with varying COVID-19 severity in an integrated comparison with influenza and sepsis patients versus healthy volunteers. We identify immune signatures and correlates of host response. Hallmarks of disease severity involved cells, their inflammatory mediators and networks, including progenitor cells and specific myeloid and lymphocyte subsets, features of the immune repertoire, acute phase response, metabolism, and coagulation. Persisting immune activation involving AP-1/p38MAPK was a specific feature of COVID-19. The plasma proteome enabled sub-phenotyping into patient clusters, predictive of severity and outcome. Systems-based integrative analyses including tensor and matrix decomposition of all modalities revealed feature groupings linked with severity and specificity compared to influenza and sepsis. Our approach and blood atlas will support future drug development, clinical trial design, and personalized medicine approaches for COVID-19
Childhood trauma in substance use disorder and depression: An analysis by gender among a Brazilian Clinical sample
Objective: in this study, we compared the frequency and intensity of childhood traumas in alcohol- or other drug-dependent patients, in patients with depression, and in a control group without psychiatric diagnoses.Methods: the study had a retrospective design of a clinical sample of men and women from the groups listed above. They were evaluated by the same standardized instrument: the Childhood Trauma Questionnaire.Results: A higher frequency and intensity of emotional, physical, and sexual abuse were found in alcohol- and other drug-dependent patients than in patients with depression, who, in turn, presented significantly higher proportions than the control group. in all of the cases, the frequency was higher among women than men.Conclusion: Because of the high frequency and intensity of childhood traumas among alcohol- or other drug-dependent patients and depressed patients, the assessment of problems due to childhood traumas among these patients is essential to a better understanding of the etiology of those disorders and to their treatment. (C) 2010 Elsevier B.V. All rights reserved.Universidade Federal de São Paulo, Dept Psicobiol, BR-04023062 São Paulo, BrazilUniv Estadual São Paulo, Fac Med Botucatu, Dept Neurol & Psiquiatria, Botucatu, SP, BrazilUniversidade Federal de São Paulo, Dept Ciencias Saude, Santos, SP, BrazilUniversidade Federal de São Paulo, Dept Psicobiol, BR-04023062 São Paulo, BrazilUniversidade Federal de São Paulo, Dept Ciencias Saude, Santos, SP, BrazilWeb of Scienc
Increased NHE3 abundance and transport activity in renal proximal tubule of rats with heart failure
Inoue BH, dos Santos L, Pessoa TD, Antonio EL, Pacheco BPM, Savignano FA, Carraro-Lacroix LR, Tucci PJF, Malnic G, Girardi ACC. Increased NHE3 abundance and transport activity in renal proximal tubule of rats with heart failure. Am J Physiol Regul Integr Comp Physiol 302: R166-R174, 2012. First published October 26, 2011; doi:10.1152/ajpregu.00127.2011.-Heart failure (HF) is associated with a reduced effective circulating volume that drives sodium and water retention and extracellular volume expansion. We therefore hypothesized that Na(+)/H(+) exchanger isoform 3 (NHE3), the major apical transcellular pathway for sodium reabsorption in the proximal tubule, is upregulated in an experimental model of HF. HF was induced in male rats by left ventricle radiofrequency ablation. Sham-operated rats (sham) were used as controls. At 6 wk after surgery, HF rats exhibited cardiac dysfunction with a dramatic increase in left ventricular end-diastolic pressure. By means of stationary in vivo microperfusion and pH-dependent sodium uptake, we demonstrated that NHE3 transport activity was significantly higher in the proximal tubule of HF compared with sham rats. Increased NHE3 activity was paralleled by increased renal cortical NHE3 expression at both protein and mRNA levels. In addition, the baseline PKA-dependent NHE3 phosphorylation at serine 552 was reduced in renal cortical membranes of rats with HF. Collectively, these results suggest that NHE3 is upregulated in the proximal tubule of HF rats by transcriptional, translational, and posttranslational mechanisms. Enhanced NHE3-mediated sodium reabsorption in the proximal tubule may contribute to extracellular volume expansion and edema, the hallmark feature of HF. Moreover, our study emphasizes the importance of undertaking a cardiorenal approach to contain progression of cardiac disease.Fundacao de Amparo a Pesquisa do Estado de Sao PauloFundacao de Amparo a Pesquisa do Estado de Sao PauloConselho Nacional de Desenvolvimento Cientifico e TecnologicoConselho Nacional de Desenvolvimento Cientifico e TecnologicoCoordenacao de Aperfeicoamento de Pessoal de Nivel SuperiorCoordenacao de Aperfeicoamento de Pessoal de Nivel Superio