137 research outputs found

    Spurious PIV vector correction using Linear Stochastic Estimation

    Get PDF
    Techniques for the experimental determination of velocity fields such as particle image velocimetry (PIV) can often be hampered by spurious vectors or sparse regions of measurement which may occur due to a number of reasons. Commonly used methods for detecting and replacing erroneous values are often based on statistical measures of the surrounding vectors and may be influenced by further poor data quality in the region. A new method is presented in this paper using Linear Stochastic Estimation for vector replacement (LSEVR) which allows for increased flexibility in situations with regions of spurious vectors. LSEVR is applied to PIV dataset to demonstrate and assess its performance relative to commonly used bilinear and bicubic interpolation methods. For replacement of a single vector, all methods performed well, with LSEVR having an average error of 11% in comparison to 14% and 18% for bilinear and bicubic interpolation respectively. A more significant difference was found in replacement of clusters of vectors which showed average vector angle errors of 10°, 9° and 6° for bilinear, bicubic and LSEVR respectively. Error in magnitude was 3% for both interpolation techniques and 1% for LSEVR showing a clear benefit to using LSEVR for conditions that require multiple clustered vectors to be replaced

    Inconsistent detection of extinction debts using different methods

    Get PDF
    © 2020 The Authors. Ecography published by John Wiley & Sons Ltd on behalf of Nordic Society Oikos The extinction debt, delayed species extinctions following landscape degradation, is a widely discussed concept. But a consensus about the prevalence of extinctions debts is hindered by a multiplicity of methods and a lack of comparisons among habitats. We applied three contrasting species–area relationship methods to test for plant community extinction debts in three habitats which had different degradation histories over the last century: calcareous grassland, heathland and woodland. These methods differ in their data requirements, with the first two using information on past and current habitat area alongside current species richness, whilst the last method also requires data on past species richness. The most data-intensive, and hence arguably most reliable method, identified extinction debts across all habitats for specialist species, whilst the other methods did not. All methods detected an extinction debt in calcareous grassland, which had undergone the most severe degradation. We conclude that some methods failed to detect an extinction debt, particularly in habitats that have undergone moderate degradation. Data on past species numbers are required for the most reliable method; as such data are rare, extinction debts may be under-reported

    The oxygen isotopic composition of phosphate in river water and its potential sources in the Upper River Taw catchment, UK

    Get PDF
    The need to reduce both point and diffuse phosphorus pollution to aquatic ecosystems is widely recognised and in order to achieve this, identification of the different pollutant sources is essential. Recently, a stable isotope approach using oxygen isotopes within phosphate (δ18OPO4) has been used in phosphorus source tracing studies. This approach was applied in a one-off survey in September 2013 to the River Taw catchment in south-west England where elevated levels of phosphate have been reported. River water δ18OPO4 along the main channel varied little, ranging from + 17.1 to + 18.8‰. This was no > 0.3‰ different to that of the isotopic equilibrium with water (Eδ18OPO4). The δ18OPO4 in the tributaries was more variable (+ 17.1 to + 18.8‰), but only deviated from Eδ18OPO4 by between 0.4 and 0.9‰. Several potential phosphate sources within the catchment were sampled and most had a narrow range of δ18OPO4 values similar to that of river Eδ18OPO4. Discharge from two waste water treatment plants had different and distinct δ18OPO4 from one another ranging between + 16.4 and + 19.6‰ and similar values to that of a dairy factory final effluent (+ 16.5 to + 17.8‰), mains tap water (+ 17.8 to + 18.4‰), and that of the phosphate extracted from river channel bed sediment (+ 16.7 to + 17.6‰). Inorganic fertilizers had a wide range of values (+ 13.3 to + 25.9‰) while stored animal wastes were consistently lower (+ 12.0 to + 15.0‰) than most other sources and Eδ18OPO4. The distinct signals from the waste water treatment plants were lost within the river over a short distance suggesting that rapid microbial cycling of phosphate was occurring, because microbial cycling shifts the isotopic signal towards Eδ18OPO4. This study has added to the global inventory of phosphate source δ18OPO4 values, but also demonstrated the limitations of this approach to identifying phosphate sources, especially at times when microbial cycling is high

    The stable oxygen isotope ratio of resin extractable phosphate derived from fresh cattle faeces

    Get PDF
    Phosphorus losses from agriculture pose an environmental threat to watercourses. A new approach using the stable oxygen isotope ratio of oxygen in phosphate (δ18OPO4 value) may help elucidate some phosphorus sources and cycling. Accurately determined and isotopically distinct source values are essential for this process. The δ18OPO4 values of animal wastes have, up to now, received little attention. Methods Phosphate (PO4) was extracted from cattle faeces using anion resins and the contribution of microbial PO4 was assessed. The δ18OPO4 value of the extracted PO4 was measured by precipitating silver phosphate and subsequent analysis on a thermal conversion elemental analyser at 1400°C, with the resultant carbon monoxide being mixed with a helium carrier gas passed through a GC column into a mass spectrometer. Faecal water oxygen isotope ratios (δ18OH2O values) were determined on a dual-inlet mass spectrometer through a process of headspace carbon dioxide equilibration with water samples. Results Microbiological results indicated that much of extracted PO4 was not derived directly from the gut fauna lysed during the extraction of PO4 from the faeces. Assuming that the faecal δ18OH2O values represented cattle body water, the predicted pyrophosphatase equilibrium δ18OPO4 (Eδ18OPO4) values ranged between +17.9 and +19.9‰, while using groundwater δ18OH2O values gave a range of +13.1 to +14.0‰. The faecal δ18OPO4 values ranged between +13.2 and +15.3‰. Conclusions The fresh faecal δ18OPO4 values were equivalent to those reported elsewhere for agricultural animal slurry. However, they were different from the Eδ18OPO4 value calculated from the faecal δ18OH2O value. Our results indicate that slurry PO4 is, in the main, derived from animal faeces although an explanation for the observed value range could not be determined

    Location prediction based on a sector snapshot for location-based services

    Get PDF
    In location-based services (LBSs), the service is provided based on the users' locations through location determination and mobility realization. Most of the current location prediction research is focused on generalized location models, where the geographic extent is divided into regular-shaped cells. These models are not suitable for certain LBSs where the objectives are to compute and present on-road services. Such techniques are the new Markov-based mobility prediction (NMMP) and prediction location model (PLM) that deal with inner cell structure and different levels of prediction, respectively. The NMMP and PLM techniques suffer from complex computation, accuracy rate regression, and insufficient accuracy. In this paper, a novel cell splitting algorithm is proposed. Also, a new prediction technique is introduced. The cell splitting is universal so it can be applied to all types of cells. Meanwhile, this algorithm is implemented to the Micro cell in parallel with the new prediction technique. The prediction technique, compared with two classic prediction techniques and the experimental results, show the effectiveness and robustness of the new splitting algorithm and prediction technique

    Screening for atrial fibrillation within a South Asian community setting using single-lead ECG

    Get PDF
    Timely detection and treatment of AF is amongst the Government’s cardiovascular priorities. Several initiatives have demonstrated the potential of AF detection using single-lead electrocardiogram (SLECG) technology in primary care settings, such as general practitioners’ (GP) surgeries. Unfortunately, some AF patients, including those from ethnic minorities, may not routinely engage with main-stream healthcare and may go undetected. Compared to White British, South Asians have a higher prevalence of cardiovascular risk factors, however fewer are diagnosed with AF. This study aimed to ascertain the feasibility of opportunistic AF screening within a South Asian community delivered by supervised pharmacy undergraduates using SL-ECG devices

    The New Horizons Spacecraft

    Full text link
    The New Horizons spacecraft was launched on 19 January 2006. The spacecraft was designed to provide a platform for seven instruments that will collect and return data from Pluto in 2015. The design drew on heritage from previous missions developed at The Johns Hopkins University Applied Physics Laboratory (APL) and other missions such as Ulysses. The trajectory design imposed constraints on mass and structural strength to meet the high launch acceleration needed to reach the Pluto system prior to the year 2020. The spacecraft subsystems were designed to meet tight mass and power allocations, yet provide the necessary control and data handling finesse to support data collection and return when the one-way light time during the Pluto flyby is 4.5 hours. Missions to the outer solar system require a radioisotope thermoelectric generator (RTG) to supply electrical power, and a single RTG is used by New Horizons. To accommodate this constraint, the spacecraft electronics were designed to operate on less than 200 W. The spacecraft system architecture provides sufficient redundancy to provide a probability of mission success of greater than 0.85, even with a mission duration of over 10 years. The spacecraft is now on its way to Pluto, with an arrival date of 14 July 2015. Initial inflight tests have verified that the spacecraft will meet the design requirements.Comment: 33 pages, 13 figures, 4 tables; To appear in a special volume of Space Science Reviews on the New Horizons missio

    The state of the Martian climate

    Get PDF
    60°N was +2.0°C, relative to the 1981–2010 average value (Fig. 5.1). This marks a new high for the record. The average annual surface air temperature (SAT) anomaly for 2016 for land stations north of starting in 1900, and is a significant increase over the previous highest value of +1.2°C, which was observed in 2007, 2011, and 2015. Average global annual temperatures also showed record values in 2015 and 2016. Currently, the Arctic is warming at more than twice the rate of lower latitudes

    Mechanisms underlying a thalamocortical transformation during active tactile sensation

    Get PDF
    During active somatosensation, neural signals expected from movement of the sensors are suppressed in the cortex, whereas information related to touch is enhanced. This tactile suppression underlies low-noise encoding of relevant tactile features and the brain’s ability to make fine tactile discriminations. Layer (L) 4 excitatory neurons in the barrel cortex, the major target of the somatosensory thalamus (VPM), respond to touch, but have low spike rates and low sensitivity to the movement of whiskers. Most neurons in VPM respond to touch and also show an increase in spike rate with whisker movement. Therefore, signals related to self-movement are suppressed in L4. Fast-spiking (FS) interneurons in L4 show similar dynamics to VPM neurons. Stimulation of halorhodopsin in FS interneurons causes a reduction in FS neuron activity and an increase in L4 excitatory neuron activity. This decrease of activity of L4 FS neurons contradicts the "paradoxical effect" predicted in networks stabilized by inhibition and in strongly-coupled networks. To explain these observations, we constructed a model of the L4 circuit, with connectivity constrained by in vitro measurements. The model explores the various synaptic conductance strengths for which L4 FS neurons actively suppress baseline and movement-related activity in layer 4 excitatory neurons. Feedforward inhibition, in concert with recurrent intracortical circuitry, produces tactile suppression. Synaptic delays in feedforward inhibition allow transmission of temporally brief volleys of activity associated with touch. Our model provides a mechanistic explanation of a behavior-related computation implemented by the thalamocortical circuit
    corecore