1,662 research outputs found

    Differences in adolescent activity and dietary behaviors across home, school, and other locations warrant location-specific intervention approaches

    Get PDF
    Background Investigation of physical activity and dietary behaviors across locations can inform “setting-specific” health behavior interventions and improve understanding of contextual vulnerabilities to poor health. This study examined how physical activity, sedentary time, and dietary behaviors differed across home, school, and other locations in young adolescents. Methods Participants were adolescents aged 12–16 years from the Baltimore-Washington, DC and the Seattle areas from a larger cross-sectional study. Participants (n = 472) wore an accelerometer and Global Positioning Systems (GPS) tracker (Mean days = 5.12, SD = 1.62) to collect location-based physical activity and sedentary data. Participants (n = 789) completed 24-h dietary recalls to assess dietary behaviors and eating locations. Spatial analyses were performed to classify daily physical activity, sedentary time patterns, and dietary behaviors by location, categorized as home, school, and “other” locations. Results Adolescents were least physically active at home (2.5 min/hour of wear time) and school (2.9 min/hour of wear time) compared to “other” locations (5.9 min/hour of wear time). Participants spent a slightly greater proportion of wear time in sedentary time when at school (41 min/hour of wear time) than at home (39 min/hour of wear time), and time in bouts lasting ≥30 min (10 min/hour of wear time) and mean sedentary bout duration (5 min) were highest at school. About 61% of daily energy intake occurred at home, 25% at school, and 14% at “other” locations. Proportionately to energy intake, daily added sugar intake (5 g/100 kcal), fruits and vegetables (0.16 servings/100 kcal), high calorie beverages (0.09 beverages/100 kcal), whole grains (0.04 servings/100 kcal), grams of fiber (0.65 g/100 kcal), and calories of fat (33 kcal/100 kcal) and saturated fat (12 kcal/100 kcal) consumed were nutritionally least favorable at “other” locations. Daily sweet and savory snacks consumed was highest at school (0.14 snacks/100 kcal). Conclusions Adolescents’ health behaviors differed based on the location/environment they were in. Although dietary behaviors were generally more favorable in the home and school locations, physical activity was generally low and sedentary time was higher in these locations. Health behavior interventions that address the multiple locations in which adolescents spend time and use location-specific behavior change strategies should be explored to optimize health behaviors in each location

    Genome-Wide Meta-Analysis of Longitudinal Alcohol Consumption Across Youth and Early Adulthood

    Get PDF
    The public health burden of alcohol is unevenly distributed across the life course, with levels of use, abuse, and dependence increasing across adolescence and peaking in early adulthood. Here, we leverage this temporal patterning to search for common genetic variants predicting developmental trajectories of alcohol consumption. Comparable psychiatric evaluations measuring alcohol consumption were collected in three longitudinal community samples ( N = 2,126, obs = 12,166). Consumption-repeated measurements spanning adolescence and early adulthood were analyzed using linear mixed models, estimating individual consumption trajectories, which were then tested for association with Illumina 660W-Quad genotype data (866,099 SNPs after imputation and QC). Association results were combined across samples using standard meta-analysis methods. Four meta-analysis associations satisfied our pre-determined genome-wide significance criterion (FDR < 0.1) and six others met our ‘suggestive’ criterion (FDR <0.2). Genome-wide significant associations were highly biological plausible, including associations within GABA transporter 1, SLC6A1 (solute carrier family 6, member 1), and exonic hits in LOC100129340 (mitofusin-1-like). Pathway analyses elaborated single marker results, indicating significant enriched associations to intuitive biological mechanisms, including neurotransmission, xenobiotic pharmacodynamics, and nuclear hormone receptors (NHR). These findings underscore the value of combining longitudinal behavioral data and genome-wide genotype information in order to study developmental patterns and improve statistical power in genomic studies

    Inhibition of alpha-synuclein fibrillization by dopamine is mediated by interactions with five C-terminal residues and with E83 in the NAC region

    Get PDF
    The interplay between dopamine and alpha-synuclein (AS) plays a central role in Parkinson's disease (PD). PD results primarily from a severe and selective devastation of dopaminergic neurons in substantia nigra pars compacta. The neuropathological hallmark of the disease is the presence of intraneuronal proteinaceous inclusions known as Lewy bodies within the surviving neurons, enriched in filamentous AS. In vitro, dopamine inhibits AS fibril formation, but the molecular determinants of this inhibition remain obscure. Here we use molecular dynamic (MD) simulations to investigate the binding of dopamine and several of its derivatives onto conformers representative of an NMR ensemble of AS structures in aqueous solution. Within the limitations inherent to MD simulations of unstructured proteins, our calculations suggest that the ligands bind to the (125)YEMPS(129) region, consistent with experimental findings. The ligands are further stabilized by long-range electrostatic interactions with glutamate 83 (E83) in the NAC region. These results suggest that by forming these interactions with AS, dopamine may affect AS aggregation and fibrillization properties. To test this hypothesis, we investigated in vitro the effects of dopamine on the aggregation of mutants designed to alter or abolish these interactions. We found that point mutations in the (125)YEMPS(129) region do not affect AS aggregation, which is consistent with the fact that dopamine interacts non-specifically with this region. In contrast, and consistent with our modeling studies, the replacement of glutamate by alanine at position 83 (E83A) abolishes the ability of dopamine to inhibit AS fibrillization

    Communications Biophysics

    Get PDF
    Contains reports on nine research projects split into four sections.National Institutes of Health (Grant 5 P01 NS13126)National Institutes of Health (Grant 5 K04 NS00113)National Institutes of Health (Training Grant 5 T32 NS07047)National Institutes of Health (Grant 5 ROl NS11153-03)National Institutes of Health (Fellowship 1 T32 NS07099-01)National Science Foundation (Grant BNS77-16861)National Institutes of Health (Grant 5 ROl NS10916)National Institutes of Health (Grant 5 ROl NS12846)National Science Foundation (Grant BNS77-21751)National Institutes of Health (Grant 1 RO1 NS14092)Health Sciences FundNational Institutes of Health (Grant 2 R01 NS11680)National Institutes of Health (Grant 2 RO1 NS11080)National Institutes of Health (Training Grant 5 T32 GM07301

    Localization of type 1 diabetes susceptibility to the MHC class I genes HLA-B and HLA-A

    Get PDF
    The major histocompatibility complex (MHC) on chromosome 6 is associated with susceptibility to more common diseases than any other region of the human genome, including almost all disorders classified as autoimmune. In type 1 diabetes the major genetic susceptibility determinants have been mapped to the MHC class II genes HLA-DQB1 and HLA-DRB1 (refs 1-3), but these genes cannot completely explain the association between type 1 diabetes and the MHC region. Owing to the region's extreme gene density, the multiplicity of disease-associated alleles, strong associations between alleles, limited genotyping capability, and inadequate statistical approaches and sample sizes, which, and how many, loci within the MHC determine susceptibility remains unclear. Here, in several large type 1 diabetes data sets, we analyse a combined total of 1,729 polymorphisms, and apply statistical methods - recursive partitioning and regression - to pinpoint disease susceptibility to the MHC class I genes HLA-B and HLA-A (risk ratios >1.5; Pcombined = 2.01 × 10-19 and 2.35 × 10-13, respectively) in addition to the established associations of the MHC class II genes. Other loci with smaller and/or rarer effects might also be involved, but to find these, future searches must take into account both the HLA class II and class I genes and use even larger samples. Taken together with previous studies, we conclude that MHC-class-I-mediated events, principally involving HLA-B*39, contribute to the aetiology of type 1 diabetes. ©2007 Nature Publishing Group

    National identity predicts public health support during a global pandemic

    Get PDF
    Changing collective behaviour and supporting non-pharmaceutical interventions is an important component in mitigating virus transmission during a pandemic. In a large international collaboration (Study 1, N = 49,968 across 67 countries), we investigated self-reported factors associated with public health behaviours (e.g., spatial distancing and stricter hygiene) and endorsed public policy interventions (e.g., closing bars and restaurants) during the early stage of the COVID-19 pandemic (April-May 2020). Respondents who reported identifying more strongly with their nation consistently reported greater engagement in public health behaviours and support for public health policies. Results were similar for representative and non-representative national samples. Study 2 (N = 42 countries) conceptually replicated the central finding using aggregate indices of national identity (obtained using the World Values Survey) and a measure of actual behaviour change during the pandemic (obtained from Google mobility reports). Higher levels of national identification prior to the pandemic predicted lower mobility during the early stage of the pandemic (r = −0.40). We discuss the potential implications of links between national identity, leadership, and public health for managing COVID-19 and future pandemics.publishedVersio

    Alignment of the CMS tracker with LHC and cosmic ray data

    Get PDF
    © CERN 2014 for the benefit of the CMS collaboration, published under the terms of the Creative Commons Attribution 3.0 License by IOP Publishing Ltd and Sissa Medialab srl. Any further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation and DOI.The central component of the CMS detector is the largest silicon tracker ever built. The precise alignment of this complex device is a formidable challenge, and only achievable with a significant extension of the technologies routinely used for tracking detectors in the past. This article describes the full-scale alignment procedure as it is used during LHC operations. Among the specific features of the method are the simultaneous determination of up to 200 000 alignment parameters with tracks, the measurement of individual sensor curvature parameters, the control of systematic misalignment effects, and the implementation of the whole procedure in a multi-processor environment for high execution speed. Overall, the achieved statistical accuracy on the module alignment is found to be significantly better than 10μm

    Combined Forward-Backward Asymmetry Measurements in Top-Antitop Quark Production at the Tevatron

    Get PDF
    The CDF and D0 experiments at the Fermilab Tevatron have measured the asymmetry between yields of forward- and backward-produced top and antitop quarks based on their rapidity difference and the asymmetry between their decay leptons. These measurements use the full data sets collected in proton-antiproton collisions at a center-of-mass energy of s=1.96\sqrt s =1.96 TeV. We report the results of combinations of the inclusive asymmetries and their differential dependencies on relevant kinematic quantities. The combined inclusive asymmetry is AFBttˉ=0.128±0.025A_{\mathrm{FB}}^{t\bar{t}} = 0.128 \pm 0.025. The combined inclusive and differential asymmetries are consistent with recent standard model predictions

    Erratum to: Measurement of exclusive Υ\Upsilon photoproduction from protons in pPb collisions at sNN=5.02TeV{\sqrt{{s_{\mathrm{NN}}}}} = 5.02\,\hbox {TeV}

    Get PDF
    corecore