
Genome-wide meta-analysis of longitudinal alcohol 
consumption across youth and early adulthood

Daniel E. Adkins, PhD1, Shaunna L. Clark, PhD1, William E. Copeland, PhD2, Martin 
Kennedy, PhD3, Kevin Conway, PhD4, Adrian Angold, MRCPsych2, Hermine Maes, PhD5, 
Youfang Liu, PhD6, Gaurav Kumar, PhD1, Alaattin Erkanli, PhD2, Ashwin A. Patkar, MD2, 
Judy Silberg, PhD5, Tyson H. Brown, PhD7, David M. Fergusson, PhD8, L. John Horwood, 
MSc8, Lindon Eaves, PhD5, Edwin J.C.G. van den Oord, PhD1, Patrick F. Sullivan, MD 
FRANZCP, and E. J. Costello, PhD2

1Center for Biomarker Research and Personalized Medicine, Virginia Commonwealth University, 
School of Pharmacy, Richmond VA 23298 2Department of Psychiatry, Duke University Medical 
Center, Durham, NC 27710 3Department of Pathology, University of Otago, Christchurch P.O. 
Box 4345, Christchurch, New Zealand. 4Division of Epidemiology, Services and Prevention 
Research, National Institute on Drug Abuse, 6001 Executive Boulevard, Suite 5185, Bethesda, 
MD 20892-9589 5Virginia Institute for Psychiatric and Behavioral Genetics, Virginia 
Commonwealth University, PO Box 980003, Richmond VA 23298-0003 6Thurston Arthritis 
Research Center, University of North Carolina at Chapel Hill, CB# 7280, 3330 Thurston Building, 
Chapel Hill, NC 27599-7280 7Department of Psychological Medicine, University of Otago, 
Christchurch P.O. Box 4345, New Zealand. 8Departments of Genetics and Psychiatry, 120 Mason 
Farm Road, 5097 Genetic Medicine Building, CB#7264, University of North Carolina at Chapel 
Hill, Chapel Hill, NC 27599-7264

Abstract

The public health burden of alcohol is unevenly distributed across the life course, with levels of 

use, abuse and dependence increasing across adolescence and peaking in early adulthood. Here we 

leverage this temporal patterning to search for common genetic variants predicting developmental 

trajectories of alcohol consumption. Comparable psychiatric evaluations measuring alcohol 

consumption were collected in three, longitudinal community samples (N=2,126, obs=12,166). 

Consumption repeated measurements spanning adolescence and early adulthood were analyzed 

using linear mixed models, estimating individual consumption trajectories, which were then tested 

for association with Illumina 660W-Quad genotype data (866,099 SNPs after imputation and QC). 

Association results were combined across samples using standard meta-analysis methods. Four 

meta-analysis associations satisfied our pre-determined genome-wide significance criterion 
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(FDR<0.1) and 6 others met our “suggestive” criterion (FDR<0.2). Genome-wide significant 

associations were highly biological plausible, including associations within GABA transporter 1, 

SLC6A1 (solute carrier family 6, member 1), and exonic hits in LOC100129340 (mitofusin-1-

like). Pathway analyses elaborated single marker results, indicating significant enriched 

associations to intuitive biological mechanisms including neurotransmission, xenobiotic 

pharmacodynamics and nuclear hormone receptors. These findings underscore the value of 

combining longitudinal behavioral data and genome-wide genotype information in order to study 

developmental patterns and improve statistical power in genomic studies.
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Nearly four percent of all deaths worldwide are attributable to alcohol (WHO, 2011). In the 

United States, alcohol is the third leading preventable cause of death, after obesity and 

tobacco use (Mokdad et al., 2004). This public health burden is unevenly distributed across 

the life course with the highest levels of use, abuse and dependence in early adulthood. It is 

well-established that both alcohol use and alcohol use disorder rates increase markedly 

across adolescence and into the early twenties (Chen & Kandel, 1995; Harford et al., 2005), 

after which disorder rates decrease considerably during young adulthood (Harford et al., 

2005). In the 2001 National Household Survey on Drug Abuse, twelve-month prevalence 

rates for any alcohol disorders dropped 28% for males and 47% for females from ages 18–

23 to ages 24–29 (Harford et al., 2005). During early adulthood, alcohol is the leading cause 

of death worldwide (WHO, 2011). Clearly, adolescence and young adulthood are critical 

developmental stages for studying alcohol misuse and its genetic influences (Rutter et al., 

1999).

Across a number of measures (e.g., drinking frequency, binge drinking, alcohol abuse or 

dependence), alcohol involvement is clearly familial and moderately heritable (h2 ≈ 40–

60%) (Kendler et al., 2008; Miles et al., 2005; Pagan et al., 2006; Silberg et al., 2003). This 

finding has led to extensive genome-wide linkage and candidate gene studies to identify 

specific susceptibility markers. Indeed, a number of risk variants have been identified (e.g., 

acetaldehyde and alcohol dehydrogenase genes) (Quertemont, 2004), but many others have 

failed to replicate in independent samples. Genome-wide association studies (GWAS) offer 

comprehensive tests of common genetic variants and have proven successful in 

characterizing the genetic architecture of many complex diseases (The Wellcome Trust Case 

Control Consortium, 2007). To date, a small body of GWAS have studied problematic 

alcohol use and related endophenotypes and identified a number of putative risk loci (Bierut 

et al., 2010; Edenberg et al., 2010; Heath et al., 2011; Schumann et al., 2011; Treutlein et al., 

2009). Implicated variants include polymorphisms in PECR (Johnson et al., 2006; Treutlein 

et al., 2009), a gene cluster on chromosome 11 (Edenberg et al., 2010), PKNOX2 (Bierut et 

al., 2010), KIA0040 (Bierut et al., 2010; Zuo et al., 2011), HTR1 (Bierut et al., 2010; Zuo et 

al., 2011) and AUTS2 (Schumann et al., 2011), among others. Particularly compelling 

evidence has been presented for rs6943555 in AUTS2, which was associated with alcohol 

consumption in a large meta-analysis (N≈26K), and corroborated by AUTS2 expression data 
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in human prefrontal cortex and murine brain, as well as reduced alcohol sensitivity with 

AUTS2 homolog downregulation in Drosophila. Such robust findings remain the exception 

to the rule, however, as most genetic variants implicated in GWAS studies have failed to 

replicate.

In response to the challenges of genomic studies of developmentally dynamic, difficult to 

measure substance abuse phenotypes, the NIDA-sponsored Genes, Environment and 

Development Initiative (GEDI) combines three longitudinal samples of psychiatric/

behavioral repeated assessments with genome-wide data generated using a common 

platform (Illumina Human660W-Quad v1). The project offers several scientific advances. 

Foremost, harmonized data across three independent samples reduces the risk of study-

specific artifacts, facilitating the search for cross-validated, replicated signals (Agrawal et 

al., 2012). Second, longitudinal data offer multiple statistical and substantive benefits 

(Adkins et al., 2010). Most fundamentally, statistical models of individual development are 

unidentifiable without multiple assessments per subject (Singer, 2003). Thus, GEDI’s 

structure allows genome-wide investigation of genetic risk for longitudinal patterns of 

alcohol abuse across its principle risk period—adolescence and young adulthood. Next, and 

crucially, when measuring any outcome with nontrivial measurement error (e.g., alcohol 

consumption), increasing the number of assessments/subject monotonically increases 

estimate precision, and consequently statistical power, with dramatic gains when 

assessments/subject are numerous, as in GEDI (Willett, Singer & Martin, 1998). Modeling 

all GEDI alcohol consumption assessments (>5 per subject) increases estimate precision >3-

fold compared to using only first and last assessments (Willett et al., 1998). Finally, we 

employ the simple, often overlooked, strategy of improving statistical power by specifying a 

quantitative outcome—alcohol consumption. The power gains of quantitative versus 

dichotomous outcome specifications are well-documented (Cohen, 1983), and it has been 

demonstrated that focusing solely on clinical diagnoses in psychiatric GWAS dramatically 

decreases power to detect effects (van der Sluis et al., 2012).

Cumulatively, these techniques help maximize power in the current study, which analyzes 

three longitudinal samples with repeated assessment of alcohol consumption across 

adolescence and young adulthood (total N=2,126, Obs=12,166). Consumption repeated 

measurements were analyzed using linear mixed models, estimating individual consumption 

trajectories (and a longitudinal mean consumption measure), which were then tested for 

association with Illumina 660W-Quad genome-wide data (866,099 SNPs after genotype 

imputation and QC). Association results were combined across samples using standard 

meta-analytic procedures (de Bakker et al., 2008). Top associations were examined for 

evidence of enriched association to known biological pathways.

Materials and methods

Description of individual studies

The Great Smoky Mountain Study (GSMS)—GSMS is a longitudinal, representative 

study of children in 11 predominantly-rural counties in southeast United States begun in 

1993 (Costello et al., 1996). Three cohorts of children, age 9, 11, and 13 years, were 

recruited from a pool of ~20,000 children resulting in N=1,420 participants (49% female). 
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Annual assessments were completed with the child and primary caregiver until age 16 and 

then with the participant again at ages 19, 21, and 24–26 for 9,904 total assessments. These 

assessments used the Childhood and Adolescent Psychiatric Assessment (Angold & 

Costello, 2000) and its upward extension. Informed consent forms were completed for all 

aspects of data collection and the study protocol was approved by the Duke Institutional 

Review Board. An average of 82% of all possible interviews was completed across all 

waves, ranging from 75% to 94% at individual waves. Blood spots collected at each 

observation were used for DNA extraction performed at Rutgers University Cell and DNA 

Repository. A total of 784 GSMS subjects, contributing 5,766 repeated alcohol consumption 

assessments, were analyzed in genome-wide association testing. Study characteristics are 

summarized in Table 1.

The Christchurch Health and Development Study (CHDS)—CHDS is a 

longitudinal study of a birth cohort of 1,265 children born in the Christchurch region of New 

Zealand in 1977 (Fergusson & Horwood, 2001). This cohort involved 97% of children born 

from April 15th to August 5th, 1977 and has been assessed on 22 occasions to age 30. Data 

were gathered during face-to-face interviews with subjects and parents, supplemented by 

data from official records. Signed consent was obtained for all aspects of data collection and 

the study has been subject to ethical review throughout its history. The present analysis is 

based on data collected during assessments of the cohort in adolescence (ages 14, 15, 16, 

and 18) and adulthood (ages 21, 25, 30). The number of subjects assessed at these ages 

ranged from 953–1,025, representing between 76% and 82% of the surviving cohort at each 

age. Whole blood was collected from most subjects, but for ~9% of participants saliva 

samples were used instead (Oragene TM, DNA Genotek Inc., Ontario, Canada). DNA 

extractions were performed at the University of Otago, Gene Structure and Function Lab. A 

total of 739 CHDS subjects, contributing 4,959 repeated alcohol consumption assessments, 

were analyzed in genome-wide association testing.

The Virginia Twin Study on Adolescent Behavioral Development (VTSABD)—
VTSABD is an ongoing cohort-longitudinal study of twins born 1974–1983; 1412 families 

were included in the first wave of data collection, with 3 subsequent waves of data 

collection occurring at approximately 1½-year intervals, and a 5th wave when participants 

were in their mid-20s (Simonoff et al., 1997). A sample of 1894 putative twin pairs was 

ascertained through the state school system and participating private schools in Virginia, and 

through families who contacted the VTSABD. A total of 1412 families (2775 children) 

participated (75%). Up to age 18, children and parents completed the Childhood and 

Adolescent Psychiatric Assessment. Parents completed a similar assessment on both twins. 

After age 18 the twins alone were interviewed using an age-updated interview designed for 

telephone administration. Whole blood was collected from VTSABD subjects and DNA 

extractions were completed at Rutgers University Cell and DNA Repository. A total of 603 

unrelated VTSABD subjects, contributing 1441 repeated alcohol consumption assessments, 

were analyzed in genome-wide association testing.
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Genotyping and quality control

All samples were genotyped using Illumina Human660W-Quad v1 DNA Analysis 

BeadChips at the Mayo Clinic. Quality control procedures were applied to each study using 

R, PLINK (Purcell et al., 2007) and EIGENSOFT (Patterson, Price & Reich, 2006). In each 

study, single nucleotide polymorphisms (SNPs) with missing rate>0.01, MAF<0.05, or 

extreme deviation (p<1E-6) from Hardy-Weinberg equilibrium were removed from further 

analysis. Subjects with missing rate>0.01 or unusual genome-wide homozygosity (|

normalized homozygosity rate|>5) were excluded. Sex was investigated using no-call 

proportions of chr Y SNPs and heterozygosity proportions for chr X SNPs. Mislabeled sex 

information was corrected after double-checking the original data and subjects with 

unexplainable results were deleted. In addition, pairwise identical-by-descent (IBD) 

estimation was evaluated to identify unexpected duplicates and relative pairs. For VTSABD, 

one subject per twin-pair, selected at random, was retained in the current analysis.

SNP dosages were imputed in each study using MaCH (Li et al., 2010). The imputation 

reference was HapMap3 CEU (Utah residents with Northern and Western European 

ancestry) for subjects of European ancestry. Unobserved population admixture due to 

ancestry is a well-known confound in GWAS (Patterson et al., 2006). To protect against 

false-positives due to ancestry, we extracted five principal components from each sample to 

capture population stratification. To improve the efficiency of population stratification 

principal components analysis (PCA), a subset of independent SNPs was selected using 

PLINK, with 77155–79517 SNPs analyzed in each study. PCA was applied to the selected 

SNPs using the “smartpca” module of EIGENSOFT.

Data Analysis

Phenotype modeling—Two longitudinal measures of over-time alcohol consumption 

were used as phenotypic outcomes. Both measures were derived from repeated assessments 

of average drinks per week. The first measure, as detailed below, was a developmental 

trajectory estimate of alcohol consumption (drinks per week) across adolescence and early 

adulthood (maximum age range: 8–30). Intuitively, this trajectory slope measures the rate at 

which alcohol consumption increases, starting with no consumption for virtually all subjects 

in childhood, then increasing at different rates (or remaining flat among non-drinkers) 

through adolescence and the transition to adulthood, before stabilizing at different levels in 

the late twenties. The second measure was the simple mean of all alcohol consumption 

(drinks per week) repeated assessments collected across adolescence and the transition to 

adulthood (maximum age range: 12–21) for each subject. We selected these two 

specifications as: (1) the trajectory outcome was derived from the best fitting longitudinal 

model of the several tested, and maximized power through including all repeated measures, 

while (2) the mean consumption outcome provided a simpler summary of individuals’ 

drinking behavior, and thus greater continuity to existing literature (Agrawal et al., 2012; 

Grant et al., 2009). The mean consumption measure also has the benefit of focusing solely 

on adolescence and the transition to adulthood—a developmental period of non-normative 

drinking, which is associated with increased risk of concurrent comorbid psychiatric 

disorders and future substance abuse and dependence (Rutter et al., 1999).
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To generate the developmental trajectory estimates, we applied a method to estimate 

longitudinal development from all available repeated observations using linear mixed 

models (van den Oord et al., 2009). This method first determines the optimal functional 

form of the developmental trajectory, then generates individual trajectory estimates based on 

the best fitting model, using best linear unbiased predictors (BLUPs) (Pinheiro & Bates, 

2000). As this approach takes advantage of all available repeated assessments, it results in 

more precise estimates than traditional approaches that estimate development using two 

assessments (i.e., change scores) (Willett et al., 1998). Further, as estimates are based on 

mixed model trajectory slopes, they are more robust to attrition than competing approaches 

(Laird & Ware, 1982). This method of estimating outcomes from longitudinal phenotypic 

assessments is well-established in psychiatric GWAS (Adkins et al., 2011; Clark et al., 

2012; McClay et al., 2011a).

In modeling the developmental trajectories, we tested several specifications of age-based 

longitudinal change including linear and quadratic functions, as well as a series of piecewise 

plateau models specifying linear change until a given age and flat thereafter (Bollen & 

Curran, 2005). Model comparisons using likelihood ratio tests for nested models, and 

BIC/AIC for non-nested quadratic and piecewise models (Burnham & Anderson, 2004), 

indicated that a piecewise model with alcohol consumption stabilizing at approximately age 

28 best fit the data. Thus, the preferred model used to generate our trajectory slope outcome 

can be written as:

where i and t are subject and assessment occasions, respectively; y is the alcohol 

consumption for subject i at assessment t; β00 is the overall sample intercept; β10 is the mean 

age slope coefficient for age specification a which is coded 0 for the earliest age observed in 

the sample, 1 for second earliest age, and so forth, until reaching the plateau age (~28), after 

which its value remains constant for subsequent ages; u0i is the subject-specific deviation 

from that overall sample intercept; u1i is the subject-specific deviation from the mean age 

slope; εti is the residual for subject i at assessment t. Random effects u0 and u1i were 

specified orthogonal. The term of interest, u1i, may more intuitively be described as the 

subject-specific alcohol consumption age trajectory. As subject-level parameters are not 

directly estimated by the mixed model, they were calculated as BLUPs in a post-estimation 

step (Pinheiro & Bates, 2000). See Supplementary Material 1 for further phenotypic 

modeling details.

Genome-wide association and meta-analyses—Genome-wide association testing 

was performed using PROBABEL (Aulchenko, Struchalin & van Duijn, 2010), GWAS 

software for use with probabilistically imputed genotype dosages. Tests were specified as 

linear regressions of additive SNP effects, controlling for the top five ancestral PCA 

dimensions as covariates. Meta-analysis procedures proposed by deBakker and colleagues 

(de Bakker et al., 2008) were used to aggregate results across the three studies. Specifically, 

aggregate beta coefficients and associated standard errors were computed as follows:
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where i indexes study number. Given the use of a common genotyping platform (Illumina 

Human660W-Quad v1 DNA Analysis BeadChips) and genotyping lab (Mayo Clinic), many 

common pitfalls in GWAS meta-analysis were avoided, including strand orientation 

mismatches, imputation reference sample heterogeneity, variable QC criteria, etc.

Multiple testing—We used a false discovery rate (FDR) (Benjamini & Hochberg, 1995) 

approach to declare statistical significance. In comparison to controlling a family-wise error 

rate (e.g., Bonferroni correction), FDR a) provides a better balance between finding true 

effects versus controlling false discoveries, b) results in comparable standards for declaring 

significance across studies because it does not directly depend on the number of tests, c) is 

relatively robust against having correlated tests (Brown & Russell, 1997). FDR is commonly 

used in high-dimensional applications, including GWAS (Beecham et al., 2009; Dubois et 

al., 2010; McClay et al., 2011b). We set a FDR threshold of 0.1 for declaring genome-wide 

significance. This specifies that, on average, 10% of the SNPs declared significant are 

expected to be false discoveries. Additionally, we discuss suggestive associations at a FDR 

threshold of 0.2 to reduce the probability of Type II statistical errors, while explicitly noting 

reduced confidence in these associations. Operationally, FDR was controlled using q-values, 

which are FDRs calculated using the p-value of the markers as thresholds for declaring 

significance (Storey & Tibshirani, 2003).

Pathway analyses—Beyond our primary meta-analysis of single marker GWAS findings, 

we also conducted secondary analyses to determine whether any known biological pathways 

harbored an excess of SNPs with small p-values. Specifically, to interrogate the data for 

evidence of enriched association to known biological pathways we conducted pathway 

analysis using ConsensusPathDB (http://cpdb.molgen.mpg.de/), a human-centric meta-

database of functional biological data, compiled from 30 separate public sources of 

biological interactions (Kamburov et al., 2011). All alcohol consumption-associated SNPs 

with meta-analysis p<0.01 were matched to the closest gene +25 kb using RefSeq (GRCh37) 

coordinate information. All implicated genes were assembled into a final non-redundant 

gene list, comprising 2590 (mean consumption) and 2506 (developmental trajectory) genes. 

For each of the 4601 reference pathways present in ConsensusPathDB, a hypergeometric 

test was performed to calculate the significance of the overlap between the genes from our 

putative susceptibility list and those present in each reference pathway. FDR was 

implemented to adjust significance for the large number of tests performed.
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Results

Single marker GWAS

Table 2 provides details on those SNPs that were genome-wide significant/suggestive 

(q<0.1/q< 0.2). Figure 1A shows Q-Q plots for meta-analyses. The plots show that the p-

values from the GWAS are generally on a straight line, indicating that the p-value 

distribution generally conforms to the expected null distribution assuming no effects of the 

markers. However, in both plots, there is also evidence that markers in the right upper corner 

have p-values smaller than would be expected under the null hypothesis, suggesting true 

association between these markers and the outcome. The plots also display λ values (i.e., 

ratio of median observed p-value to the median expected p-value under the null hypothesis) 

approximately equal to 1 (λ = 0.998 and 1.000), indicating no systematic test statistic 

inflation and adequate control of population stratification (Supplementary Material 2 for 

study-specific Q-Q plots). Manhattan plots are provided in Figure 1B, and provide a low-

resolution visualization of spatial clustering among association signals. The full set of 

GWAS p-values considered in this study is available for download at: http://

www.pharmacy.vcu.edu/biomarker/resources/supplementary/.

The top significant finding involves three genome-wide significant SNPs (rs7031417: 

q=0.01, p=1.4E-08; rs17053864: q=0.05, p= 1.5E-07; rs7019589: q=0.06, p=2.3E-07) at 

pseudogene LOC100129340 (mitofusin-1-like) associated with mean adolescent alcohol 

consumption. These SNPs show moderately low MAF (~0.09) with minimal MAF 

differences across the three samples (Table 2). Study specific results show that this meta-

analysis association was not driven by a single sample, with GSMS and CHDS exhibiting 

comparably low p-values (Table 2). Examination of the regional plot for the locus shows a 

robustly associated haplotype spanning ~100kb with >10 spatially clustered SNPs showing 

nominal association (Supplementary Material 3A). Notably, one of the genome-wide 

significant hits is located in the transcribed exon 4.

The second genome-wide significant association, also to mean consumption, is a locus in 

GABA transporter SLC6A1 (solute carrier family 6 (neurotransmitter transporter, GABA), 

member 1). In addition to the genome-wide hit in this gene (rs11710497: q=0.05, 

p=1.2E-07), a second SNP met our suggestive criteria (rs6778281: q=0.15, p=7.1E-07). 

Again, MAFs were moderately low (~0.10) and highly comparable across individual 

samples. Also, significance was not driven by a single study, with comparably low p-values 

for GSMS and VTSABD (Table 2). Inspection of the regional plot indicates a fairly small 

LD block overlaying exonic regions of SLC6A1. Further, this small linkage disequilibrium 

(LD) block is highly enriched for strong associations including several nominally associated 

coding SNPs (p<0.001) (Supplementary Material 3B).

Top findings for the developmental consumption trajectory included a cluster of correlated 

SNPs about 150kb upstream of ADRA2A (adrenoceptor alpha 2A), with rs12257178 

exhibiting the strongest association (q=0.14, p=4.8E-07). MAFs were high (~0.4) and 

homogenous across studies. Association strength was primarily driven by GSMS and CHDS 

samples (Table 2). While it is questionable whether this putative susceptibility locus is in 

LD with ADRA2A, the regional plot does show a correlated SNP located ~80kb upstream of 
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the gene (Supplementary Material 3C). Also, further inspection of the regional plot indicates 

an unusually wide area of moderately enriched association surrounding the suggestive locus, 

spanning ~500kb and encompassing ADRA2A.Thus, it is possible that this association may 

tag cis regulatory elements or genic variants for ADRA2A.

Other top hits included a pair of SNPs in high LD (R2>0.9) within ZNF578 (rs1984450 and 

rs7253326: q=0.14; p≈2.7E-07) associated with the trajectory outcome, and an interesting 

spatial pattern of SNPS associated with mean consumption surrounding an intronic SNP in 

MIPOL1 (rs4898641: q=0.19, p=1.1E-06). The ZNF578 finding exhibits almost exactly the 

same level of association across studies (p≈3.0E-03) and moderately low MAF (~0.10). 

Correlated signals overlapped ZNF578 and the adjacent ZNF808 and ZNF701 genes, and tag 

two nominally significant coding SNPs in ZNF578 (Supplementary Material 3D). Next, 

rs4898641 in MIPOL1 appears to tag a ~200kb haplotype, enriched for association, which 

closely corresponds to the gene boundaries of MIPOL1 (Supplementary Material 3E). Our 

final suggestive finding involved a genic locus in IGSF9B centered on rs694424 (q=0.14, 

p=5.4E-07) (Supplementary Material 3F). This finding is of lower confidence, however, as 

its association strength is essentially driven by a single sample (VTSABD).

Pathway analyses

Results from ConsensusPathDB indicated significant involvement of several intuitive 

biological pathways (Table 3). As ConsensusPathDB is a meta-database bioinformatic tool, 

it mines multiple individual databases—in the current analysis significant (q<0.1) pathways 

were found in Reactome, PharmGKB, Signlink and Wikipathways databases (Kamburov et 

al., 2011). The top pathways, “neuronal system” (p= 2.5E-07, q=4.5E-04) and the related 

“transmission across chemical synapses” (p=3.7E-05, q=3.3E-02), indicated an association 

between genetic variation in neurotransmission and individual differences in mean 

adolescent alcohol consumption, with disproportionate representation of GABAergic and 

glutamatergic genes in both of these pathways. Other significant pathways for mean 

adolescent consumption including “nuclear hormone receptors” (p=2.6E-04, q=9.4E-02), 

“celecoxib pharmacodynamics” and “adherens junctions interactions” (p=2.1E-04, 

q=9.4E-02) (Table 3). The three significant pathways for the developmental consumption 

trajectory indicated more general developmental themes, with specific findings including 

“developmental biology” (p=7.6E-05, q=8.1E-02), “G protein signaling pathways” 

(p=1.1E-04, q=8.1E-02) and “axon guidance” (p=1.3E-04, q=8.1E-02).

Discussion

Developmental perspectives have long stressed the importance of accounting for temporality 

and life course variation in models of substance abuse. A primary insight of such 

perspectives is that the importance of various risk factors fluctuates across developmental 

trajectories (Adkins et al., 2012; Willett et al., 1998). The current study endeavors to wed 

this perspective to genomic approaches to alcohol consumption. While psychiatric genetics 

has made advances toward elucidating the link between genetic variation and alcohol 

involvement, this research has largely been atemporal. The weakness of such static 

perspectives on the genetic determinants of alcohol involvement is highlighted not only by 
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developmental perspectives, but also by research within genetics showing that epigenetic 

mechanisms (i.e., methylation, histone modification and chromatin remodeling) regulate 

gene expression in response to developmental and environmental cues (Whitelaw & 

Whitelaw, 2006). Using the GEDI GWAS samples, this longitudinal GWAS meta-analysis 

has addressed the issue of developmental variation in genetic influences across adolescence 

and young adulthood through genome-wide testing of common variant effects on 

longitudinal measures of alcohol consumption, employing FDR methods to control the risk 

of false discoveries.

Our top genome-wide finding involved three SNPs (rs7031417, rs17053864, rs7019589) at 

pseudogene LOC100129340 (mitofusin-1-like). Very little is known regarding this 

pseudogene, which was only added in the most recent, hg19, gene track (thus, its absence in 

the regional plot). However, variants within LOC100129340 were found to be associated 

with adult human height in a large GWAS meta-analysis (Gudbjartsson et al., 2008). Also, 

one of the genome-wide significant hits fell within exon 4 of the pseudogene. Given that 

pseudogenes, by definition, lack protein-coding function, the prior probability of this locus 

being a true discovery is somewhat diminished. However, considering: a) the association 

signal is in a transcribed sequence, b) pseudogene transcripts have demonstrated trans-

regulation of homologous coding genes (Hirotsune et al., 2003) and c) endogenous siRNA 

are sometimes derived from pseudogene transcription (Tam et al., 2008), it would be rash to 

dismiss this result as a false discovery.

Our second genome-wide significant locus was tagged by rs11710497, located within 

GABA transporter 1—SLC6A1 (solute carrier family 6 (neurotransmitter transporter, 

GABA), member 1). Given that alcohol functions primarily through binding to GABA 

receptors, and that this gene encodes protein GAT-1, which removes GABA from the 

synaptic cleft, there is a notably high prior probability of this being a true discovery. 

Furthermore, while the two genome-wide significant/suggestive hits were in intronic 

regions, they tag strongly associated exonic variants in SLC6A1. Although the network 

biology of the gene suggests obvious links to alcohol consumption, there has been 

surprisingly little research studying this relationship. Conversely, studies have implicated 

the gene in anxiety disorders and ADHD (e.g., Lasky-Su et al., 2008; Thoeringer et al., 

2010; Thoeringer et al., 2009). This finding should focus future research on the study of 

SLC6A1 variants in alcohol abuse and other psychiatric phenotypes related to cortical 

excitability/inhibition.

The strong association of a large region near ADRA2A (adrenoceptor alpha 2A) also 

provides a promising potential biological mechanism. Alpha-2-adrenergic receptors are 

members of the G protein-coupled receptor superfamily. These receptors have a critical role 

in regulating neurotransmitter release from sympathetic nerves and from adrenergic neurons 

in the CNS. Alpha2A and alpha2C subtypes are required for normal presynaptic control of 

transmitter release from sympathetic nerves in central noradrenergic neurons, and the 

alpha2A subtype inhibits transmitter release at high neural stimulation frequencies. This 

gene encodes alpha2A subtype and it contains no introns in either its coding or untranslated 

sequences. There is an extensive literature on the gene and many findings suggesting 

association to ADHD (e.g., Kim et al., 2010; Roman et al., 2005; Roman et al., 2003; 
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Waldman et al., 2006), as well as metabolic traits (e.g., glycemic phenotypes, blood 

pressure) (for meta-analysis see Talmud et al., 2011) and substance abuse (Clarke et al., 

2012; Merenakk et al., 2011; Prestes et al., 2007). Given the neurobiological implications, 

this gene should be considered a strong candidate in future alcohol abuse studies. The final 

three genome-wide suggestive (q<0.2) loci were for intronic SNPs in ZNF578, MIPOL1 and 

IGSF9B and have no reported evidence linking them to alcohol use/abuse phenotypes. Thus, 

future research will be required to adjudicate whether they are novel susceptibility loci or 

false discoveries.

Pathway analyses indicated several intuitive biological mechanisms. Top results for mean 

adolescent consumption (“neuronal system” and “transmission across chemical synapses”) 

suggested extensive involvement of GABAergic (e.g., SLC6A1, GABRG3, GABRG2, 

GABBR2) and glutamatergic (e.g., GRIK5, GLUL, GRIK1, GRIN2B) neurotransmission. 

Given that GABA and glutamate neurotransmitter systems are primary pharmacodynamic 

targets of alcohol (for review see Vengeliene et al., 2008), these results are consistent with 

extant knowledge of the drug’s biological mechanisms. “Celecoxib pharmacodynamics” and 

“nuclear hormone receptors” also offer intriguing biological mechanisms for genetic 

variation in alcohol metabolism. Celecoxib acts by inhibiting prostaglandin synthesis 

(Penning et al., 1997). Prostaglandins are lipid autocrine/paracrine mediators with a variety 

of physiological effects, including inflammation modulation (Hata & Breyer, 2004), which 

have been shown to moderate alcohol “hangover” intensity (Wiese, Shlipak & Browner, 

2000) and reduce alcohol-induced liver toxicity (Nanji et al., 1993). “Nuclear hormone 

receptors” (NHR) are intracellular proteins responsible for sensing steroid and thyroid 

hormones and some other signaling molecules. Multiple NHR genes implicated in the 

current analysis are specifically expressed in liver (e.g., HNF4A, HNF4G) and several others 

function as thyroid hormone receptors, which have been linked to severity of alcohol 

craving, consumption and withdrawal (Alfos et al., 1996; Ozsoy et al., 2006).

The three biological pathways significantly associated with the developmental consumption 

trajectory were broader and more explicitly developmentally oriented, particularly 

“developmental biology” and “axon guidance”, which shared several implicated genes 

related to nervous system development (e.g., ROBO1, ROBO2, ANK3). The final significant 

pathway associated with the developmental trajectory, G-protein signaling, functions as an 

intermediary messenger system for many hormones, neurotransmitters and other signaling 

molecules. While G-protein signaling is involved in many biological processes, it is known 

that alcohol intoxication is directly connected to the actions of four G-protein gated 

inwardly-rectifying potassium (GIRK) channel subunits, one of which was among the genes 

implicated in this pathway analysis (i.e., KCNJ3) (Aryal et al., 2009; Lewohl et al., 1999). 

Despite the general plausibility of these pathway results, it is worth noting that given the 

incomplete, low resolution nature of current biological databases, findings should be 

regarded as tentative pending future tests of replication as database content and accuracy 

continue to improve (Khatri, Sirota & Butte, 2012).

Clearly, it is premature to suggest direct clinical applications of these findings for 

therapeutic target or biomarker discovery. On the contrary, actualizing the promise of 

translational genomics and converting academic findings into clinical applications will 
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require a cumulative process of aggregating and jointly considering large bodies of evidence 

using meta-analytic and data integration techniques. Thus, it is important to rapidly 

disseminate genome-wide association results from longitudinal behavioral studies with 

genomic data, such as the GEDI samples. To facilitate this process we provide all p-values 

(http://www.pharmacy.vcu.edu/biomarker/resources/supplementary/) as a resource for 

investigators with the requisite samples to carry out replication or further meta-analysis.

As with any genetic associations, our findings will require additional replication and 

functional validation. However, the present study shows the potential of GWAS meta-

analyses of longitudinal data to discover genes and pathways that mediate developmental 

trends in alcohol consumption. A better understanding of these biological mechanisms and 

the roles of specific polymorphisms may facilitate the development of improved biomarker-

based approaches to personalize substance abuse treatment. It is hoped that this research will 

eventually contribute to reducing the global health burden of substance abuse by facilitating 

identification of novel mechanisms, biomarkers and therapeutic targets.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
A) QQ plots and B) Manhattan plots for GWAS results of two longitudinal alcohol 

consumption measures.
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Table 1

Characteristics of the studies

GSMS CHDS VTSABD

Representative population sample? Y Y Y (twins)

Number of data waves 7–10 22 5

Age range from start to most recent wave 9–26 birth-30 8–30

Total phenotyped subjects 1415 1265 2588

Total phenotype repeated observations 9437 6921 5837

Assessment instruments CAPA; YAPA DISC; RAPI; CIDI CAPA; YAFU

DNA source Dried Bloodspots Whole Blood Whole Blood

Subjects removed during quality control 94 22 17

Total number of subjects included in genome-wide 
association testing

784 739 603

Genotyping Platform Illumina 660W-Quad v1 
DNA Analysis BeadChip

Illumina 660W-Quad v1 
DNA Analysis BeadChip

Illumina 660W-Quad 
v1 DNA Analysis 

BeadChip
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Table 3

ConsensusPathDB pathway results for all SNPs within genes nominally associated (p<0.01) with longitudinal 

alcohol consumption

Pathway P q Database Associated genes from GWAS in pathway

Mean Consumption

Neuronal System 2.5E-07 4.5E-04 Reactome SLC6A1; KCNC1; KCNC2; GABRG3; GABRG2; HSPA8; 
KCNG4; GRIK5; GLUL; SLC5A7; GABRB3; AP2B1; 
GRIP2; CALM2; CALM3; KCNG1; CACNB2; 
CACNA1B; CHRNB2; KCNMA1; PRKCB; GAD1; 
GRIA2; KCNS3; ABCC8; GABBR2; RIMS1; PLCB1; 
KCNJ11; GRIA1; VAMP1; KCNQ5; KCNAB1; 
RPS6KA2; KCNQ1; CHRNA4; KCNH8; KCNN1; 
CACNG4; CACNA2D3; CACNA2D1; KCNG3; KCNJ6; 
ADCY4; ACTN2; KCNH7; KCNMB2; KCNH1; 
KCNMB4; RASGRF2; GRIK1; HCN4; GJD2; GRIN2B; 
GNG7; CACNA1E; GNG2; SLC1A2; GRIP1; CACNG3; 
SYN2; SYN3; GNG8

Transmission across Chemical Synapses 3.7E-05 3.3E-02 Reactome SLC6A1; GABRG3; GABRG2; HSPA8; GLUL; SLC5A7; 
GABBR2; GAD1; GABRB3; CALM2; CALM3; CACNB2; 
CACNA1B; CHRNB2; CACNA1E; AP2B1; GRIA2; 
RIMS1; PLCB1; GRIA1; PRKCB; CHRNA4; 
CACNA2D3; CACNA2D1; ADCY4; ACTN2; RPS6KA2; 
GRIP2; KCNJ6; RASGRF2; SYN2; GRIK5; GRIN2B; 
GNG7; GNG2; SLC1A2; GRIK1; GRIP1; CACNG3; 
CACNG4; SYN3; GNG8

Celecoxib Pathway, Pharmacodynamics 1.9E-04 9.4E-02 PharmGKB PDK1; CACNA2D1; TBXAS1; PTGIR; CACNA1I; 
CACNB2; CACNA1B; KCNQ5; PTGER1; CACNA1E; 
KCNQ1; CTNNB1; CACNA1C; PTGS2; CACNA2D3; 
PLA2G4A; CACNA1S

Adherens junctions interactions 2.1E-04 9.4E-02 Reactome CDH11; CDH10; CDH13; CDH12; CTNNB1; PVRL2; 
CDH2; CDH6; CADM2; CDH4; CADM1

Nuclear Hormone Receptors 2.6E-04 9.4E-02 Signalink NR3C2; ESRRG; RARG; ESR1; HNF4A; HNF4G; 
NR4A1; NR2F1; RXRA; ESRRB; THRB; NR2C1; RORA; 
SMAD3; NR5A2

Developmental Trajectory

Developmental Biology 7.6E-05 8.1E-02 Reactome ITGA9; ROBO2; CDH15; NRP2; SCN5A; NRCAM; 
ITGA1; HRAS; DOCK1; PCSK6; TRIO; CTNNB1; 
MAP2K1; CSNK2A1P; MED6; DNM3; CHL1; STIP1; 
CACNA1G; PITPNA; NCAM1; SPTBN1; FURIN; 
NCOA3; PRNP; BOC; CACNB2; CACNA1C; CACNA1D; 
TLN1; MED15; SLIT1; SCN4A; CDH2; CDH4; EPHB2; 
LAMA1; ACVR2B; RAC2; SIAH1; CRMP1; UNC5A; 
SCN8A; COL9A1; PPARG; CLTA; COL5A1; ABLIM1; 
FES; ABLIM2; CTNNA2; KIAA1598; SEMA5A; ROBO1; 
PLXNA2; VAV2; ST8SIA2; ROCK2; PLXNA4; MEF2C; 
CDON; ANK3; NTN1; CNTN6; PAK7; SCN3B; MYO10

G Protein Signaling Pathways 1.1E-04 8.1E-02 Wikipathways GNAO1; HRAS; PDE1C; PRKCA; PRKCH; GNB5; 
PRKCE; GNB2; PRKCZ; PRKAR1A; ITPR1; AKAP1; 
KCNJ3; AKAP5; AKAP6; AKAP7; ADCY1; AKAP2; 
ADCY9; GNA14; GNGT2; PPP3CA; PDE4B; PDE4D

Axon guidance 1.3E-04 8.1E-02 Reactome ITGA9; ROBO2; SCN5A; NRCAM; ITGA1; HRAS; 
DOCK1; MAP2K1; CSNK2A1P; CNTN6; DNM3; CHL1; 
STIP1; TLN1; PITPNA; NCAM1; SPTBN1; CACNB2; 
CACNA1C; PRNP; CACNA1G; SLIT1; SCN4A; EPHB2; 
LAMA1; TRIO; RAC2; SIAH1; UNC5A; SCN8A; 
CACNA1D; CRMP1; COL5A1; ABLIM1; FES; ABLIM2; 
COL9A1; NRP2; KIAA1598; SEMA5A; ROBO1; NTN1; 
VAV2; ST8SIA2; ROCK2; PLXNA4; ANK3; PLXNA2; 
CLTA; PAK7; SCN3B; MYO10
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