13 research outputs found

    Data S2: Raw data of benthic cover

    Get PDF
    Parrotfish are fundamental species in controlling algal phase-shifts and ensuring the resilience of coral reefs. Nevertheless, little is known on their ecological role in the south-western Atlantic Ocean. The present study analysed the ontogenetic foraging activity and feeding selectivity of the Brazilian endemic parrotfish Scarus zelindae using behavioural observation and benthic composition analyses. We found a significant negative relationship between fish size and feeding rates for S. zelindae individuals. Thus, terminal phase individuals forage with lower feeding rates compared to juveniles and initial phase individuals. The highest relative foraging frequency of S. zelindae was on epilithic algae matrix (EAM) with similar values for juveniles (86.6%), initial phase (88.1%) and terminal phase (88.6%) individuals. The second preferred benthos for juveniles was sponge (11.6%) compared with initial (4.5%) and terminal life phases (1.3%). Different life phases of S. zelindae foraged on different benthos according to their availability. Based on Ivlev’s electivity index, juveniles selected EAM and sponge, while initial phase and terminal phase individuals only selected EAM. Our findings demonstrate that the foraging frequency of the endemic parrotfish S. zelindae is reduced according to body size and that there is a slight ontogenetic change in feeding selectivity. Therefore, ecological knowledge of ontogenetic variations on resource use is critical for the remaining parrotfish populations which have been dramatically reduced in the Southwestern Atlantic Ocean

    Loss of coral reef growth capacity to track future increases in sea level

    Get PDF
    Water-depths above coral reefs is predicted to increase due to global sea-level rise (SLR). As ecological degradation inhibits the vertical accretion of coral reefs, it is likely that coastal wave exposure will increase but there currently exists a lack of data in projections concerning local rates of reef growth and local SLR. In this study we have aggregated ecological data of more than 200 tropical western Atlantic and Indian Ocean reefs and calculated their vertical growth which we have then compared with recent and projected rates of SLR across different Representative Concentration Pathway (RCP) scenarios. While many reefs currently show vertical growth that would be sufficient to keep-up with recent historic SLR, future projections under scenario RCP4.5 reveal that without substantial ecological recovery many reefs will not have the capacity to track SLR. Under RCP8.5, we predict that mean water depth will increase by over half a metre by 2100 across the majority of reefs. We found that coral cover strongly predicted whether a reef could track SLR, but that the majority of reefs had coral cover significantly lower than that required to prevent reef submergence. To limit reef submergence, and thus the impacts of waves and storms on adjacent coasts, climate mitigation and local impacts that reduce coral cover (e.g., local pollution and physical damage through development land reclamation) will be necessary

    Data from: Herbivory facilitates growth of a key reef-building Caribbean coral

    No full text
    The decline of reef-building corals in conjunction with shifts to short-lived opportunistic species has prompted concerns that Caribbean reef framework-building capacity has substantially diminished. Restoring herbivore populations may be a potential driver of coral recovery; however, the impact of herbivores on coral calcification has been little studied. We performed an exclusion experiment to evaluate the impact of herbivory on Orbicella faveolata coral growth over 14 months. The experiment consisted of three treatments: full exclusion cages; half cage procedural controls; and uncaged control plates, each with small O. faveolata colonies. We found that herbivorous fish exclusion had a substantial impact on both macroalgal cover and coral growth. Fleshy macroalgae reached 50% cover within some exclusion cages, but were almost absent from uncaged control plates. Critically, O. faveolata calcification rates were suppressed by almost half within exclusion cages, with monthly coral growth negatively related to overgrowth by fleshy macroalgae. These findings highlight the importance of herbivorous fishes for coral growth and the detrimental impact of macroalgal proliferation in the Caribbean. Policy makers and local managers should consider measures to protect herbivorous fishes and reduce macroalgal proliferation to enable coral communities to continue to grow and function

    Rapidly increasing macroalgal cover not related to herbivorous fishes on Mesoamerican reefs

    No full text
    Long-term phase shifts from coral to macroalgal dominated reef systems are well documented in the Caribbean. Although the impact of coral diseases, climate change and other factors is acknowledged, major herbivore loss through disease and overfishing is often assigned a primary role. However, direct evidence for the link between herbivore abundance, macroalgal and coral cover is sparse, particularly over broad spatial scales. In this study we use a database of coral reef surveys performed at 85 sites along the Mesoamerican Reef of Mexico, Belize, Guatemala and Honduras, to examine potential ecological links by tracking site trajectories over the period 2005–2014. Despite the long-term reduction of herbivory capacity reported across the Caribbean, the Mesoamerican Reef region displayed relatively low macroalgal cover at the onset of the study. Subsequently, increasing fleshy macroalgal cover was pervasive. Herbivorous fish populations were not responsible for this trend as fleshy macroalgal cover change was not correlated with initial herbivorous fish biomass or change, and the majority of sites experienced increases in macroalgae browser biomass. This contrasts the coral reef top-down herbivore control paradigm and suggests the role of external factors in making environmental conditions more favourable for algae. Increasing macroalgal cover typically suppresses ecosystem services and leads to degraded reef systems. Consequently, policy makers and local coral reef managers should reassess the focus on herbivorous fish protection and consider complementary measures such as watershed management in order to arrest this trend

    Suchley 2017 Ecology and Evolution Data

    No full text
    Excel spreadsheet contains 4 tabs. 1) Monthly_Plate_Data: Monthly plate algal coverage, coral polyp count and algal-coral overgrowth data. 2) Coral_Initial_Data: Initial coral area, mass and polyp count. 3) Overall_Calcification: Coral calcification over study period for 6 coral colonies in cages, 6 coral colonies in half cages, and 5 coral colonies on control plates. 4) Light_Data: Light intensity time series for one day in one cage, one half cage and on one control plate

    Loss of coral reef growth capacity to track future increases in sea level

    No full text
    Sea-level rise (SLR) is predicted to elevate water depths above coral reefs and to increase coastal wave exposure as ecological degradation limits vertical reef growth, but projections lack data on interactions between local rates of reef growth and sea level rise. Here we calculate the vertical growth potential of more than 200 tropical western Atlantic and Indian Ocean reefs, and compare these against recent and projected rates of SLR under different Representative Concentration Pathway (RCP) scenarios. Although many reefs retain accretion rates close to recent SLR trends, few will have the capacity to track SLR projections under RCP4.5 scenarios without sustained ecological recovery, and under RCP8.5 scenarios most reefs are predicted to experience mean water depth increases of more than 0.5 m by 2100. Coral cover strongly predicts reef capacity to track SLR, but threshold cover levels that will be necessary to prevent submergence are well above those observed on most reefs. Urgent action is thus needed to mitigate climate, sea-level and future ecological changes in order to limit the magnitude of future reef submergence
    corecore