30 research outputs found

    Wdpcp, a PCP Protein Required for Ciliogenesis, Regulates Directional Cell Migration and Cell Polarity by Direct Modulation of the Actin Cytoskeleton

    Get PDF
    Planar cell polarity (PCP) regulates cell alignment required for collective cell movement during embryonic development. This requires PCP/PCP effector proteins, some of which also play essential roles in ciliogenesis, highlighting the long-standing question of the role of the cilium in PCP. Wdpcp, a PCP effector, was recently shown to regulate both ciliogenesis and collective cell movement, but the underlying mechanism is unknown. Here we show Wdpcp can regulate PCP by direct modulation of the actin cytoskeleton. These studies were made possible by recovery of a Wdpcp mutant mouse model. Wdpcp-deficient mice exhibit phenotypes reminiscent of Bardet-Biedl/Meckel-Gruber ciliopathy syndromes, including cardiac outflow tract and cochlea defects associated with PCP perturbation. We observed Wdpcp is localized to the transition zone, and in Wdpcp-deficient cells, Sept2, Nphp1, and Mks1 were lost from the transition zone, indicating Wdpcp is required for recruitment of proteins essential for ciliogenesis. Wdpcp is also found in the cytoplasm, where it is localized in the actin cytoskeleton and in focal adhesions. Wdpcp interacts with Sept2 and is colocalized with Sept2 in actin filaments, but in Wdpcp-deficient cells, Sept2 was lost from the actin cytoskeleton, suggesting Wdpcp is required for Sept2 recruitment to actin filaments. Significantly, organization of the actin filaments and focal contacts were markedly changed in Wdpcp-deficient cells. This was associated with decreased membrane ruffling, failure to establish cell polarity, and loss of directional cell migration. These results suggest the PCP defects in Wdpcp mutants are not caused by loss of cilia, but by direct disruption of the actin cytoskeleton. Consistent with this, Wdpcp mutant cochlea has normal kinocilia and yet exhibits PCP defects. Together, these findings provide the first evidence, to our knowledge, that a PCP component required for ciliogenesis can directly modulate the actin cytoskeleton to regulate cell polarity and directional cell migration

    Bioinorganic Chemistry of Alzheimer’s Disease

    Get PDF

    Identifying the ion channels responsible for signaling gastro-intestinal based pain

    Get PDF
    We are normally unaware of the complex signalling events which continuously occur within our internal organs. Most of us only become cognisant when sensations of hunger, fullness, urgency or gas arise. However, for patients with organic and functional bowel disorders pain is an unpleasant and often debilitating reminder. Furthermore, chronic pain still represents a large unmet need for clinical treatment. Consequently, chronic pain has a considerable economic impact on health care systems and the afflicted individuals. In order to address this need we must understand how symptoms are generated within the gut, the molecular pathways responsible for generating these signals and how this process changes in disease states.Stuart M. Brierley, Patrick A. Hughes, Andrea M. Harrington, Grigori Y. Rychkov and L. Ashley Blacksha

    Activated Cranial Cervical Cord Neurons Affect Left Ventricular Infarct Size and the Potential for Sudden Cardiac Death

    No full text
    To evaluate whether cervical spinal neurons can influence cardiac indices and myocyte viability in the acutely ischemic heart, the hearts of anesthetized rabbits subjected to 30. min of LAD coronary arterial occlusion (CAO) were studied 3. h after reperfusion. Control animals were compared to those exposed to pre-emptive high cervical cord stimulation (SCS; the dorsal aspect of the C1-C2 spinal cord was stimulated electrically at 50. Hz; 0.2. ms; 90% of motor threshold, starting 15. min prior to and continuing throughout CAO). Four groups of animals were so tested: 1) neuroaxis intact; 2) prior cervical vagotomy; 3) prior transection of the dorsal spinal columns at C6; and 4) following pharmacological treatment [muscarinic (atropine) or adrenergic (atenolol, prazosin or yohimbine) receptor blockade]. Infarct size (IS) was measured by tetrazolium, expressed as percentage of risk zone. C1-C2 SCS reduced acute ischemia induced IS by 43%, without changing the incidence of sudden cardiac death (SCD). While SCS-induced reduction in IS was unaffected by vagotomy, it was no longer evident following transection of C6 dorsal columns or atropinization. Beta-adrenoceptor blockade eliminated ischemia induced SCD, while alpha-receptor blockade doubled its incidence. During SCS, myocardial ischemia induced SCD was eliminated following vagotomy while remaining unaffected by atropinization. These data indicate that, in contrast to thoracic spinal neurons, i) cranial cervical spinal neurons affect both adrenergic and cholinergic motor outflows to the heart such that ii) their activation modifies ventricular infarct size and lethal arrhythmogenesis

    Distinct prefrontal top-down circuits differentially modulate sensorimotor behavior

    No full text
    © 2020, The Author(s). Sensorimotor behaviors require processing of behaviorally relevant sensory cues and the ability to select appropriate responses from a vast behavioral repertoire. Modulation by the prefrontal cortex (PFC) is thought to be key for both processes, but the precise role of specific circuits remains unclear. We examined the sensorimotor function of anatomically distinct outputs from a subdivision of the mouse PFC, the anterior cingulate cortex (ACC). Using a visually guided two-choice behavioral paradigm with multiple cue-response mappings, we dissociated the sensory and motor response components of sensorimotor control. Projection-specific two-photon calcium imaging and optogenetic manipulations show that ACC outputs to the superior colliculus, a key midbrain structure for response selection, principally coordinate specific motor responses. Importantly, ACC outputs exert control by reducing the innate response bias of the superior colliculus. In contrast, ACC outputs to the visual cortex facilitate sensory processing of visual cues. Our results ascribe motor and sensory roles to ACC projections to the superior colliculus and the visual cortex and demonstrate for the first time a circuit motif for PFC function wherein anatomically non-overlapping output pathways coordinate complementary but distinct aspects of visual sensorimotor behavior

    The ion channel TRPA1 is required for normal mechanosensation and is modulated by algesic stimuli

    No full text
    Background & aimsThe transient receptor potential (TRP) channel family includes transducers of mechanical and chemical stimuli for visceral sensory neurons. TRP ankyrin 1 (TRPA1) is implicated in inflammatory pain; it interacts with G-protein-coupled receptors, but little is known about its role in the gastrointestinal (GI) tract. Sensory information from the GI tract is conducted via 5 afferent subtypes along 3 pathways.MethodsNodose and dorsal root ganglia whose neurons innnervate 3 different regions of the GI tract were analyzed from wild-type and TRPA1(-/-) mice using quantitative reverse-transcription polymerase chain reaction, retrograde labeling, and in situ hybridization. Distal colon sections were analyzed by immunohistochemistry. In vitro electrophysiology and pharmacology studies were performed, and colorectal distension and visceromotor responses were measured. Colitis was induced by administration of trinitrobenzene sulphonic acid.ResultsTRPA1 is required for normal mechano- and chemosensory function in specific subsets of vagal, splanchnic, and pelvic afferents. The behavioral responses to noxious colonic distension were substantially reduced in TRPA1(-/-) mice. TRPA1 agonists caused mechanical hypersensitivity, which increased in mice with colitis. Colonic afferents were activated by bradykinin and capsaicin, which mimic effects of tissue damage; wild-type and TRPA1(-/-) mice had similar direct responses to these 2 stimuli. After activation by bradykinin, wild-type afferents had increased mechanosensitivity, whereas, after capsaicin exposure, mechanosensitivity was reduced: these changes were absent in TRPA1(-/-) mice. No interaction between protease-activated receptor-2 and TRPA1 was evident.ConclusionsThese findings demonstrate a previously unrecognized role for TRPA1 in normal and inflamed mechanosensory function and nociception within the viscera.Stuart M. Brierley, Patrick A. Hughes, Amanda J. Page, Kelvin Y. Kwan, Christopher M. Martin, Tracey A. O'Donnell, Nicole J. Cooper, Andrea M. Harrington, Birgit Adam, Tobias Liebregts, Gerald Holtmann, David P. Corey, Grigori Y. Rychkov and L. Ashley Blacksha

    Ultrafast laser-matter interaction with nanostructured targets

    No full text
    Conventional solid-density laser-plasma targets quickly ionize to make a plasma mirror, which largely reflects ultra-intense laser pulses. This Fresnel reflection at the plane boundary largely wastes our e orts at ultra-intense laser/solid interaction, and limits target heating to nonlinear generation of high-energy electrons which penetrate inward. One way around this dual problem is to create a material with an anisotropic dielectric function, for instance by nanostructuring a material in such a way that it cannot support the material responses which generate a specularly reflected beam. We present linear theory for metallic and plasma nanowires, particle-incell simulations of the interaction of ultra-intense femtosecond pulses with nickel nanowires, showing penetration of laser light far deeper than a nickel skin-depth, helping to uniformly heat near-solid material to conditions of high energy-densities, and XFEL experiments giving insight into their ionization and excitation
    corecore