190 research outputs found
On the Biological Plausibility of Artificial Metaplasticity
The training algorithm studied in this paper is inspired by the biological metaplasticity property of neurons. Tested on different multidisciplinary applications, it achieves a more efficient training and improves Artificial Neural Network Performance. The algorithm has been recently proposed for Artificial Neural Networks in general, although for the purpose of discussing its biological plausibility, a Multilayer Perceptron has been used. During the training phase, the artificial metaplasticity multilayer perceptron could be considered a new probabilistic version of the presynaptic rule, as during the training phase the algorithm assigns higher values for updating the weights in the less probable activations than in the ones with higher probabilit
A Prediction Model to Diabetes using Artificial Metaplasticity
Diabetes is the most common disease nowadays in all populations and in all age groups. Different techniques of artificial intelligence has been applied to diabetes problem. This research proposed the artificial metaplasticity on multilayer perceptron (AMMLP) as prediction model for prediction of diabetes. The Pima Indians diabetes was used to test the proposed model AMMLP. The results obtained by AMMLP were compared with other algorithms, recently proposed by other researchers, that were applied to the same database. The best result obtained so far with the AMMLP algorithm is 89.93
Saturation in heteronuclear photoassociation of 6Li7Li
We report heteronuclear photoassociation spectroscopy in a mixture of
magneto-optically trapped 6Li and 7Li. Hyperfine resolved spectra of the
vibrational level v=83 of the singlet state have been taken up to intensities
of 1000 W/cm^2. Saturation of the photoassociation rate has been observed for
two hyperfine transitions, which can be shown to be due to saturation of the
rate coefficient near the unitarity limit. Saturation intensities on the order
of 40 W/cm^2 can be determined.Comment: 5 pages, 3 figures, to appear in Phys. Rev. A (Rapid Communication
Reinforcement determines the timing dependence of corticostriatal synaptic plasticity in vivo
Plasticity at synapses between the cortex and striatum is considered critical for learning novel actions. However, investigations of spike-timing-dependent plasticity (STDP) at these synapses have been performed largely in brain slice preparations, without consideration of physiological reinforcement signals. This has led to conflicting findings, and hampered the ability to relate neural plasticity to behavior. Using intracellular striatal recordings in intact rats, we show here that pairing presynaptic and postsynaptic activity induces robust Hebbian bidirectional plasticity, dependent on dopamine and adenosine signaling. Such plasticity, however, requires the arrival of a reward-conditioned sensory reinforcement signal within 2 s of the STDP pairing, thus revealing a timing-dependent eligibility trace on which reinforcement operates. These observations are validated with both computational modeling and behavioral testing. Our results indicate that Hebbian corticostriatal plasticity can be induced by classical reinforcement learning mechanisms, and might be central to the acquisition of novel actions
Measurement of zero degree single photon energy spectra for sqrt(s) = 7TeV proton-proton collisions at LHC
In early 2010, the Large Hadron Collider forward (LHCf) experiment measured
very forward neutral particle spectra in LHC proton-proton collisions. From a
limited data set taken under the best beam conditions (low beam-gas background
and low occurance of pile-up events), the single photon spectra at sqrt(s)=7TeV
and pseudo-rapidity (eta) ranges from 8.81 to 8.99 and from 10.94 to infinity
were obtained for the first time and are reported in this paper. The spectra
from two independent LHCf detectors are consistent with one another and serve
as a cross check of the data. The photon spectra are also compared with the
predictions of several hadron interaction models that are used extensively for
modeling ultra high energy cosmic ray showers. Despite conservative estimates
for the systematic errors, none of the models agree perfectly with the
measurements. A notable difference is found between the data and the DPMJET
3.04 and PYTHIA 8.145 hadron interaction models above 2TeV where the models
predict higher photon yield than the data. The QGSJET II-03 model predicts
overall lower photon yield than the data, especially above 2TeV in the rapidity
range 8.81<eta<8.99
Photoassociation spectroscopy of cold calcium atoms
Photoassociation spectroscopy experiments on 40Ca atoms close to the
dissociation limit 4s4s 1S0 - 4s4p 1P1 are presented. The vibronic spectrum was
measured for detunings of the photoassociation laser ranging from 0.6 GHz to 68
GHz with respect to the atomic resonance. In contrast to previous measurements
the rotational splitting of the vibrational lines was fully resolved. Full
quantum mechanical numerical simulations of the photoassociation spectrum were
performed which allowed us to put constraints on the possible range of the
calcium scattering length to between 50 a_0 and 300 a_0
Measurement of zero degree inclusive photon energy spectra for 900 GeV proton-proton collisions at LHC
The inclusive photon energy spectra measured by the Large Hadron Collider
forward (LHCf) experiment in the very forward region of LHC proton-proton
collisions at 900 GeV are reported. The results from the analysis
of 0.30 of data collected in May 2010 in the two
pseudorapidity regions of and are compared
with the predictions of the hadronic interaction models DPMJET 3.04, EPOS 1.99,
PYTHIA 8.145, QGSJET I -.1em I-03 and SIBYLL 2.1, which are widely used in
ultra-high-energy cosmic-ray experiments. EPOS 1.99 and SYBILL 2.1 show a
reasonable agreement with the spectral shape of the experimental data, whereas
they predict lower cross-sections than the data. The other models, DPMJET 3.04,
QGSJET I -.1em I-03 and PYTHIA 8.145, are in good agreement with the data below
300 GeV but predict harder energy spectra than the data above 300 GeV. The
results of these comparisons exhibited features similar to those for the
previously reported data for 7 TeV collisions
The exposure of the hybrid detector of the Pierre Auger Observatory
The Pierre Auger Observatory is a detector for ultra-high energy cosmic rays.
It consists of a surface array to measure secondary particles at ground level
and a fluorescence detector to measure the development of air showers in the
atmosphere above the array. The "hybrid" detection mode combines the
information from the two subsystems. We describe the determination of the
hybrid exposure for events observed by the fluorescence telescopes in
coincidence with at least one water-Cherenkov detector of the surface array. A
detailed knowledge of the time dependence of the detection operations is
crucial for an accurate evaluation of the exposure. We discuss the relevance of
monitoring data collected during operations, such as the status of the
fluorescence detector, background light and atmospheric conditions, that are
used in both simulation and reconstruction.Comment: Paper accepted by Astroparticle Physic
Atmospheric effects on extensive air showers observed with the Surface Detector of the Pierre Auger Observatory
Atmospheric parameters, such as pressure (P), temperature (T) and density,
affect the development of extensive air showers initiated by energetic cosmic
rays. We have studied the impact of atmospheric variations on extensive air
showers by means of the surface detector of the Pierre Auger Observatory. The
rate of events shows a ~10% seasonal modulation and ~2% diurnal one. We find
that the observed behaviour is explained by a model including the effects
associated with the variations of pressure and density. The former affects the
longitudinal development of air showers while the latter influences the Moliere
radius and hence the lateral distribution of the shower particles. The model is
validated with full simulations of extensive air showers using atmospheric
profiles measured at the site of the Pierre Auger Observatory.Comment: 24 pages, 9 figures, accepted for publication in Astroparticle
Physic
The Fluorescence Detector of the Pierre Auger Observatory
The Pierre Auger Observatory is a hybrid detector for ultra-high energy
cosmic rays. It combines a surface array to measure secondary particles at
ground level together with a fluorescence detector to measure the development
of air showers in the atmosphere above the array. The fluorescence detector
comprises 24 large telescopes specialized for measuring the nitrogen
fluorescence caused by charged particles of cosmic ray air showers. In this
paper we describe the components of the fluorescence detector including its
optical system, the design of the camera, the electronics, and the systems for
relative and absolute calibration. We also discuss the operation and the
monitoring of the detector. Finally, we evaluate the detector performance and
precision of shower reconstructions.Comment: 53 pages. Submitted to Nuclear Instruments and Methods in Physics
Research Section
- …