57 research outputs found
Performance Analysis of Energy Harvesting-Assisted Overlay Cognitive NOMA Systems With Incremental Relaying
In this paper, we analyze the performance of an energy harvesting (EH)-assisted overlay cognitive non-orthogonal multiple access (NOMA) system. The underlying system consists of a primary transmitter-receiver pair accompanied by an energy-constrained secondary transmitter (ST) with its intended receiver. Accordingly, ST employs a time switching (TS) based receiver architecture to harvest energy from radio-frequency signals of the primary transmissions, and thereby uses this energy to relay the primary information and to transmit its own information simultaneously using the NOMA principle. For this, we propose two cooperative spectrum sharing (CSS) schemes based on incremental relaying (IR) protocol using amplify-and-forward (AF) and decode-and-forward (DF) strategies, viz., CSS-IAF and CSS-IDF, and compare their performance with the competitive fixed relaying based schemes. The proposed IR-based schemes adeptly avail the degrees-of-freedom to boost the system performance. Thereby, considering the realistic assumption of the NOMA-based imperfect successive interference cancellation, we derive the expressions of outage probability for the primary and secondary networks under both CSS-IAF and CSS-IDF schemes subject to the Nakagami-m fading. In addition, we quantify the throughput and energy efficiency for the considered system. The obtained theoretical findings are finally validated through numerous analytical and simulation results to reveal the advantages of the proposed CSS schemes over the baseline direct link transmission and orthogonal multiple access schemes. © 2020 IEEE
Edible Coatings Fortified With Carvacrol Reduce Campylobacter jejuni on Chicken Wingettes and Modulate Expression of Select Virulence Genes
Campylobacter jejuni, a leading cause of foodborne disease in humans, associate primarily with consumption of contaminated poultry and poultry products. Intervention strategies aimed at reducing C. jejuni contamination on poultry products could significantly reduce C. jejuni infection in humans. This study evaluated the efficacy of gum arabic (GA) and chitosan (CH) fortified with carvacrol (CR) as an antimicrobial coating treatment for reducing C. jejuni on chicken wingettes. Aforementioned compounds are generally recognized as safe status compounds obtained from gum arabic tree, crustaceans and oregano oil respectively. A total of four separate trials were conducted in which wingettes were randomly assigned to baseline, saline control (wingettes washed with saline), GA (10%), CH (2%), CR (0.25, 0.5, or 1%) or their combinations. Each wingette was inoculated with a cocktail of four wild-type strains of C. jejuni (∼7.5 log10 cfu/sample). Following 1 min of coating in aforementioned treatments, wingettes were air dried (1 h) and sampled at 0, 1, 3, 5, and 7 days of refrigerated storage for C. jejuni and total aerobic counts (n = 5 wingettes/treatment/day). In addition, the effect of treatments on wingette color was measured using a Minolta colorimeter. Furthermore, the effect of treatments on the expression of C. jejuni survival/virulence genes was evaluated using real-time quantitative PCR. Results showed that all three doses of CR, CH or GA-based coating fortified with CR reduced C. jejuni from day 0 through 7 by up to 3.0 log10 cfu/sample (P < 0.05). The antimicrobial efficacy of GA was improved by CR and the coatings reduced C. jejuni by ∼1 to 2 log10 cfu/sample at day 7. Moreover, CH + CR coatings reduced total aerobic counts when compared with non-coated samples for a majority of the storage times. No significant difference in the color of chicken wingettes was observed between treatments. Exposure of pathogen to sublethal concentrations of CR, CH or combination significantly modulated select genes encoding for energy taxis (cetB), motility (motA), binding (cadF), and attachment (jlpA). The results suggest that GA or CH-based coating with CR could potentially be used as a natural antimicrobial to control C. jejuni in postharvest poultry products
Impact of an Integrated Health, Nutrition, and Early Child Stimulation and Responsive Care Intervention Package Delivered to Preterm or Term Small for Gestational Age Babies During Infancy on Growth and Neurodevelopment: Study Protocol of an Individually Randomized Controlled Trial in India (Small Babies Trial)
BACKGROUND: Preterm and term small for gestational age (SGA) babies are at high risk of experiencing malnutrition and impaired neurodevelopment. Standalone interventions have modest and sometimes inconsistent effects on growth and neurodevelopment in these babies. For greater impact, intervention may be needed in multiple domains-health, nutrition, and psychosocial care and support. Therefore, the combined effects of an integrated intervention package for preterm and term SGA on growth and neurodevelopment are worth investigating.
METHODS: An individually randomized controlled trial is being conducted in urban and peri-urban low to middle-socioeconomic neighborhoods in South Delhi, India. Infants are randomized (1:1) into two strata of 1300 preterm and 1300 term SGA infants each to receive the intervention package or routine care. Infants will be followed until 12 months of age. Outcome data will be collected by an independent outcome ascertainment team at infant ages 1, 3, 6, 9, and 12 months and at 2, 6, and 12 months after delivery for mothers.
DISCUSSION: The findings of this study will indicate whether providing an intervention that addresses factors known to limit growth and neurodevelopment can offer substantial benefits to preterm or term SGA infants. The results from this study will increase our understanding of growth and development and guide the design of public health programs in low- and middle-income settings for vulnerable infants.
TRIAL REGISTRATION: The trial has been registered prospectively in Clinical Trial Registry - India # CTRI/2021/11/037881, Registered on 08 November 2021
Impact of an integrated health, nutrition, and early child stimulation and responsive care intervention package delivered to preterm or term small for gestational age babies during infancy on growth and neurodevelopment: study protocol of an individually randomized controlled trial in India (Small Babies Trial)
Background: Preterm and term small for gestational age (SGA) babies are at high risk of experiencing malnutrition and impaired neurodevelopment. Standalone interventions have modest and sometimes inconsistent effects on growth and neurodevelopment in these babies. For greater impact, intervention may be needed in multiple domains-health, nutrition, and psychosocial care and support. Therefore, the combined effects of an integrated intervention package for preterm and term SGA on growth and neurodevelopment are worth investigating. Methods: An individually randomized controlled trial is being conducted in urban and peri-urban low to middle-socioeconomic neighborhoods in South Delhi, India. Infants are randomized (1:1) into two strata of 1300 preterm and 1300 term SGA infants each to receive the intervention package or routine care. Infants will be followed until 12 months of age. Outcome data will be collected by an independent outcome ascertainment team at infant ages 1, 3, 6, 9, and 12 months and at 2, 6, and 12 months after delivery for mothers. Discussion: The findings of this study will indicate whether providing an intervention that addresses factors known to limit growth and neurodevelopment can offer substantial benefits to preterm or term SGA infants. The results from this study will increase our understanding of growth and development and guide the design of public health programs in low- and middle-income settings for vulnerable infants. Trial registration: The trial has been registered prospectively in Clinical Trial Registry - India # CTRI/2021/11/037881, Registered on 08 November 2021. Keywords: Child health; Early child stimulation; Growth failure; Intrauterine growth restriction; Responsive stimulation; Small for gestational age; Small vulnerable newborns; preterm. © 2024. The Author(s).The study was funded by Centre for Intervention Science in Maternal and Child Health at the University of Bergen (Bergen, Norway). The funding agency did not play any role in the design of the study and is neither involved in nor has any influence over the collection of analysis or interpretation of data.publishedVersio
Obesity Prevalence in Nepal: Public Health Challenges in a Low-Income Nation during an Alarming Worldwide Trend
The future toll of the obesity epidemic will likely hit hardest in low- and middle-income countries. Ongoing urbanization promotes risk factors including sedentary lifestyle and fat- and sugar-laden diets. Low-income countries like Nepal experience a double disease burden: infectious diseases as well as rising incidence of noncommunicable diseases (e.g., cardiovascular disease and diabetes mellitus) frequently characterized by obesity. Nepal currently directs efforts towards curing disease but pays little attention to preventive actions. This article highlights obesity prevalence in Nepal, delineates the challenges identified by our pilot study (including low health literacy rates), and suggests strategies to overcome this trend
Protocol for the cost-consequence and equity impact analyses of a cluster randomised controlled trial comparing three variants of a nutrition-sensitive agricultural extension intervention to improve maternal and child dietary diversity and nutritional status in rural Odisha, India (UPAVAN trial).
BACKGROUND: Undernutrition causes around 3.1 million child deaths annually, around 45% of all child deaths. India has one of the highest proportions of maternal and child undernutrition globally. To accelerate reductions in undernutrition, nutrition-specific interventions need to be coupled with nutrition-sensitive programmes that tackle the underlying causes of undernutrition. This paper describes the planned economic evaluation of the UPAVAN trial, a four-arm, cluster randomised controlled trial that tests the nutritional and agricultural impacts of an innovative agriculture extension platform of women's groups viewing videos on nutrition-sensitive agriculture practices, coupled with a nutrition-specific behaviour-change intervention of videos on nutrition, and a participatory learning and action approach. METHODS: The economic evaluation of the UPAVAN interventions will be conducted from a societal perspective, taking into account all costs incurred by the implementing agency (programme costs), community and health care providers, and participants and their households, and all measurable outcomes associated with the interventions. All direct and indirect costs, including time costs and donated goods, will be estimated. The economic evaluation will take the form of a cost-consequence analysis, comparing incremental costs and incremental changes in the outcomes of the interventions, compared with the status quo. Robustness of the results will be assessed through a series of sensitivity analyses. In addition, an analysis of the equity impact of the interventions will be conducted. DISCUSSION: Evidence on the cost and cost-effectiveness of nutrition-sensitive agriculture interventions is scarce. This limits understanding of the costs of rolling out or scaling up programs. The findings of this economic evaluation will provide useful information for different multisectoral stakeholders involved in the planning and implementation of nutrition-sensitive agriculture programmes. TRIAL REGISTRATION: ISRCTN65922679 . Registered on 21 December 2016
Effect of nutrition-sensitive agriculture interventions with participatory videos and women's group meetings on maternal and child nutritional outcomes in rural Odisha, India (UPAVAN trial): a four-arm, observer-blind, cluster-randomised controlled trial.
BACKGROUND: Almost a quarter of the world's undernourished people live in India. We tested the effects of three nutrition-sensitive agriculture (NSA) interventions on maternal and child nutrition in India. METHODS: We did a parallel, four-arm, observer-blind, cluster-randomised trial in Keonjhar district, Odisha, India. A cluster was one or more villages with a combined minimum population of 800 residents. The clusters were allocated 1:1:1:1 to a control group or an intervention group of fortnightly women's groups meetings and household visits over 32 months using: NSA videos (AGRI group); NSA and nutrition-specific videos (AGRI-NUT group); or NSA videos and a nutrition-specific participatory learning and action (PLA) cycle meetings and videos (AGRI-NUT+PLA group). Primary outcomes were the proportion of children aged 6-23 months consuming at least four of seven food groups the previous day and mean maternal body-mass index (BMI). Secondary outcomes were proportion of mothers consuming at least five of ten food groups and child wasting (proportion of children with weight-for-height Z score SD <-2). Outcomes were assessed in children and mothers through cross-sectional surveys at baseline and at endline, 36 months later. Analyses were by intention to treat. Participants and intervention facilitators were not blinded to allocation; the research team were. This trial is registered at ISRCTN, ISRCTN65922679. FINDINGS: 148 of 162 clusters assessed for eligibility were enrolled and randomly allocated to trial groups (37 clusters per group). Baseline surveys took place from Nov 24, 2016, to Jan 24, 2017; clusters were randomised from December, 2016, to January, 2017; and interventions were implemented from March 20, 2017, to Oct 31, 2019, and endline surveys done from Nov 19, 2019, to Jan 12, 2020, in an average of 32 households per cluster. All clusters were included in the analyses. There was an increase in the proportion of children consuming at least four of seven food groups in the AGRI-NUT (adjusted relative risk [RR] 1·19, 95% CI 1·03 to 1·37, p=0·02) and AGRI-NUT+PLA (1·27, 1·11 to 1·46, p=0·001) groups, but not AGRI (1·06, 0·91 to 1·23, p=0·44), compared with the control group. We found no effects on mean maternal BMI (adjusted mean differences vs control, AGRI -0·05, -0·34 to 0·24; AGRI-NUT 0·04, -0·26 to 0·33; AGRI-NUT+PLA -0·03, -0·3 to 0·23). An increase in the proportion of mothers consuming at least five of ten food groups was seen in the AGRI (adjusted RR 1·21, 1·01 to 1·45) and AGRI-NUT+PLA (1·30, 1·10 to 1·53) groups compared with the control group, but not in AGRI-NUT (1·16, 0·98 to 1·38). We found no effects on child wasting (adjusted RR vs control, AGRI 0·95, 0·73 to 1·24; AGRI-NUT 0·96, 0·72 to 1·29; AGRI-NUT+PLA 0·96, 0·73 to 1·26). INTERPRETATION: Women's groups using combinations of NSA videos, nutrition-specific videos, and PLA cycle meetings improved maternal and child diet quality in rural Odisha, India. These components have been implemented separately in several low-income settings; effects could be increased by scaling up together. FUNDING: Bill & Melinda Gates Foundation, UK AID from the UK Government, and US Agency for International Development
Global age-sex-specific mortality, life expectancy, and population estimates in 204 countries and territories and 811 subnational locations, 1950–2021, and the impact of the COVID-19 pandemic: a comprehensive demographic analysis for the Global Burden of Disease Study 2021
Background: Estimates of demographic metrics are crucial to assess levels and trends of population health outcomes. The profound impact of the COVID-19 pandemic on populations worldwide has underscored the need for timely estimates to understand this unprecedented event within the context of long-term population health trends. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 provides new demographic estimates for 204 countries and territories and 811 additional subnational locations from 1950 to 2021, with a particular emphasis on changes in mortality and life expectancy that occurred during the 2020–21 COVID-19 pandemic period. Methods: 22 223 data sources from vital registration, sample registration, surveys, censuses, and other sources were used to estimate mortality, with a subset of these sources used exclusively to estimate excess mortality due to the COVID-19 pandemic. 2026 data sources were used for population estimation. Additional sources were used to estimate migration; the effects of the HIV epidemic; and demographic discontinuities due to conflicts, famines, natural disasters, and pandemics, which are used as inputs for estimating mortality and population. Spatiotemporal Gaussian process regression (ST-GPR) was used to generate under-5 mortality rates, which synthesised 30 763 location-years of vital registration and sample registration data, 1365 surveys and censuses, and 80 other sources. ST-GPR was also used to estimate adult mortality (between ages 15 and 59 years) based on information from 31 642 location-years of vital registration and sample registration data, 355 surveys and censuses, and 24 other sources. Estimates of child and adult mortality rates were then used to generate life tables with a relational model life table system. For countries with large HIV epidemics, life tables were adjusted using independent estimates of HIV-specific mortality generated via an epidemiological analysis of HIV prevalence surveys, antenatal clinic serosurveillance, and other data sources. Excess mortality due to the COVID-19 pandemic in 2020 and 2021 was determined by subtracting observed all-cause mortality (adjusted for late registration and mortality anomalies) from the mortality expected in the absence of the pandemic. Expected mortality was calculated based on historical trends using an ensemble of models. In location-years where all-cause mortality data were unavailable, we estimated excess mortality rates using a regression model with covariates pertaining to the pandemic. Population size was computed using a Bayesian hierarchical cohort component model. Life expectancy was calculated using age-specific mortality rates and standard demographic methods. Uncertainty intervals (UIs) were calculated for every metric using the 25th and 975th ordered values from a 1000-draw posterior distribution. Findings: Global all-cause mortality followed two distinct patterns over the study period: age-standardised mortality rates declined between 1950 and 2019 (a 62·8% [95% UI 60·5–65·1] decline), and increased during the COVID-19 pandemic period (2020–21; 5·1% [0·9–9·6] increase). In contrast with the overall reverse in mortality trends during the pandemic period, child mortality continued to decline, with 4·66 million (3·98–5·50) global deaths in children younger than 5 years in 2021 compared with 5·21 million (4·50–6·01) in 2019. An estimated 131 million (126–137) people died globally from all causes in 2020 and 2021 combined, of which 15·9 million (14·7–17·2) were due to the COVID-19 pandemic (measured by excess mortality, which includes deaths directly due to SARS-CoV-2 infection and those indirectly due to other social, economic, or behavioural changes associated with the pandemic). Excess mortality rates exceeded 150 deaths per 100 000 population during at least one year of the pandemic in 80 countries and territories, whereas 20 nations had a negative excess mortality rate in 2020 or 2021, indicating that all-cause mortality in these countries was lower during the pandemic than expected based on historical trends. Between 1950 and 2021, global life expectancy at birth increased by 22·7 years (20·8–24·8), from 49·0 years (46·7–51·3) to 71·7 years (70·9–72·5). Global life expectancy at birth declined by 1·6 years (1·0–2·2) between 2019 and 2021, reversing historical trends. An increase in life expectancy was only observed in 32 (15·7%) of 204 countries and territories between 2019 and 2021. The global population reached 7·89 billion (7·67–8·13) people in 2021, by which time 56 of 204 countries and territories had peaked and subsequently populations have declined. The largest proportion of population growth between 2020 and 2021 was in sub-Saharan Africa (39·5% [28·4–52·7]) and south Asia (26·3% [9·0–44·7]). From 2000 to 2021, the ratio of the population aged 65 years and older to the population aged younger than 15 years increased in 188 (92·2%) of 204 nations. Interpretation: Global adult mortality rates markedly increased during the COVID-19 pandemic in 2020 and 2021, reversing past decreasing trends, while child mortality rates continued to decline, albeit more slowly than in earlier years. Although COVID-19 had a substantial impact on many demographic indicators during the first 2 years of the pandemic, overall global health progress over the 72 years evaluated has been profound, with considerable improvements in mortality and life expectancy. Additionally, we observed a deceleration of global population growth since 2017, despite steady or increasing growth in lower-income countries, combined with a continued global shift of population age structures towards older ages. These demographic changes will likely present future challenges to health systems, economies, and societies. The comprehensive demographic estimates reported here will enable researchers, policy makers, health practitioners, and other key stakeholders to better understand and address the profound changes that have occurred in the global health landscape following the first 2 years of the COVID-19 pandemic, and longer-term trends beyond the pandemic
Burden of disease scenarios for 204 countries and territories, 2022–2050: a forecasting analysis for the Global Burden of Disease Study 2021
Background: Future trends in disease burden and drivers of health are of great interest to policy makers and the public at large. This information can be used for policy and long-term health investment, planning, and prioritisation. We have expanded and improved upon previous forecasts produced as part of the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) and provide a reference forecast (the most likely future), and alternative scenarios assessing disease burden trajectories if selected sets of risk factors were eliminated from current levels by 2050. Methods: Using forecasts of major drivers of health such as the Socio-demographic Index (SDI; a composite measure of lag-distributed income per capita, mean years of education, and total fertility under 25 years of age) and the full set of risk factor exposures captured by GBD, we provide cause-specific forecasts of mortality, years of life lost (YLLs), years lived with disability (YLDs), and disability-adjusted life-years (DALYs) by age and sex from 2022 to 2050 for 204 countries and territories, 21 GBD regions, seven super-regions, and the world. All analyses were done at the cause-specific level so that only risk factors deemed causal by the GBD comparative risk assessment influenced future trajectories of mortality for each disease. Cause-specific mortality was modelled using mixed-effects models with SDI and time as the main covariates, and the combined impact of causal risk factors as an offset in the model. At the all-cause mortality level, we captured unexplained variation by modelling residuals with an autoregressive integrated moving average model with drift attenuation. These all-cause forecasts constrained the cause-specific forecasts at successively deeper levels of the GBD cause hierarchy using cascading mortality models, thus ensuring a robust estimate of cause-specific mortality. For non-fatal measures (eg, low back pain), incidence and prevalence were forecasted from mixed-effects models with SDI as the main covariate, and YLDs were computed from the resulting prevalence forecasts and average disability weights from GBD. Alternative future scenarios were constructed by replacing appropriate reference trajectories for risk factors with hypothetical trajectories of gradual elimination of risk factor exposure from current levels to 2050. The scenarios were constructed from various sets of risk factors: environmental risks (Safer Environment scenario), risks associated with communicable, maternal, neonatal, and nutritional diseases (CMNNs; Improved Childhood Nutrition and Vaccination scenario), risks associated with major non-communicable diseases (NCDs; Improved Behavioural and Metabolic Risks scenario), and the combined effects of these three scenarios. Using the Shared Socioeconomic Pathways climate scenarios SSP2-4.5 as reference and SSP1-1.9 as an optimistic alternative in the Safer Environment scenario, we accounted for climate change impact on health by using the most recent Intergovernmental Panel on Climate Change temperature forecasts and published trajectories of ambient air pollution for the same two scenarios. Life expectancy and healthy life expectancy were computed using standard methods. The forecasting framework includes computing the age-sex-specific future population for each location and separately for each scenario. 95% uncertainty intervals (UIs) for each individual future estimate were derived from the 2·5th and 97·5th percentiles of distributions generated from propagating 500 draws through the multistage computational pipeline. Findings: In the reference scenario forecast, global and super-regional life expectancy increased from 2022 to 2050, but improvement was at a slower pace than in the three decades preceding the COVID-19 pandemic (beginning in 2020). Gains in future life expectancy were forecasted to be greatest in super-regions with comparatively low life expectancies (such as sub-Saharan Africa) compared with super-regions with higher life expectancies (such as the high-income super-region), leading to a trend towards convergence in life expectancy across locations between now and 2050. At the super-region level, forecasted healthy life expectancy patterns were similar to those of life expectancies. Forecasts for the reference scenario found that health will improve in the coming decades, with all-cause age-standardised DALY rates decreasing in every GBD super-region. The total DALY burden measured in counts, however, will increase in every super-region, largely a function of population ageing and growth. We also forecasted that both DALY counts and age-standardised DALY rates will continue to shift from CMNNs to NCDs, with the most pronounced shifts occurring in sub-Saharan Africa (60·1% [95% UI 56·8–63·1] of DALYs were from CMNNs in 2022 compared with 35·8% [31·0–45·0] in 2050) and south Asia (31·7% [29·2–34·1] to 15·5% [13·7–17·5]). This shift is reflected in the leading global causes of DALYs, with the top four causes in 2050 being ischaemic heart disease, stroke, diabetes, and chronic obstructive pulmonary disease, compared with 2022, with ischaemic heart disease, neonatal disorders, stroke, and lower respiratory infections at the top. The global proportion of DALYs due to YLDs likewise increased from 33·8% (27·4–40·3) to 41·1% (33·9–48·1) from 2022 to 2050, demonstrating an important shift in overall disease burden towards morbidity and away from premature death. The largest shift of this kind was forecasted for sub-Saharan Africa, from 20·1% (15·6–25·3) of DALYs due to YLDs in 2022 to 35·6% (26·5–43·0) in 2050. In the assessment of alternative future scenarios, the combined effects of the scenarios (Safer Environment, Improved Childhood Nutrition and Vaccination, and Improved Behavioural and Metabolic Risks scenarios) demonstrated an important decrease in the global burden of DALYs in 2050 of 15·4% (13·5–17·5) compared with the reference scenario, with decreases across super-regions ranging from 10·4% (9·7–11·3) in the high-income super-region to 23·9% (20·7–27·3) in north Africa and the Middle East. The Safer Environment scenario had its largest decrease in sub-Saharan Africa (5·2% [3·5–6·8]), the Improved Behavioural and Metabolic Risks scenario in north Africa and the Middle East (23·2% [20·2–26·5]), and the Improved Nutrition and Vaccination scenario in sub-Saharan Africa (2·0% [–0·6 to 3·6]). Interpretation: Globally, life expectancy and age-standardised disease burden were forecasted to improve between 2022 and 2050, with the majority of the burden continuing to shift from CMNNs to NCDs. That said, continued progress on reducing the CMNN disease burden will be dependent on maintaining investment in and policy emphasis on CMNN disease prevention and treatment. Mostly due to growth and ageing of populations, the number of deaths and DALYs due to all causes combined will generally increase. By constructing alternative future scenarios wherein certain risk exposures are eliminated by 2050, we have shown that opportunities exist to substantially improve health outcomes in the future through concerted efforts to prevent exposure to well established risk factors and to expand access to key health interventions
Global age-sex-specific mortality, life expectancy, and population estimates in 204 countries and territories and 811 subnational locations, 1950–2021, and the impact of the COVID-19 pandemic: a comprehensive demographic analysis for the Global Burden of Disease Study 2021
BACKGROUND: Estimates of demographic metrics are crucial to assess levels and trends of population health outcomes. The profound impact of the COVID-19 pandemic on populations worldwide has underscored the need for timely estimates to understand this unprecedented event within the context of long-term population health trends. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 provides new demographic estimates for 204 countries and territories and 811 additional subnational locations from 1950 to 2021, with a particular emphasis on changes in mortality and life expectancy that occurred during the 2020–21 COVID-19 pandemic period. METHODS: 22 223 data sources from vital registration, sample registration, surveys, censuses, and other sources were used to estimate mortality, with a subset of these sources used exclusively to estimate excess mortality due to the COVID-19 pandemic. 2026 data sources were used for population estimation. Additional sources were used to estimate migration; the effects of the HIV epidemic; and demographic discontinuities due to conflicts, famines, natural disasters, and pandemics, which are used as inputs for estimating mortality and population. Spatiotemporal Gaussian process regression (ST-GPR) was used to generate under-5 mortality rates, which synthesised 30 763 location-years of vital registration and sample registration data, 1365 surveys and censuses, and 80 other sources. ST-GPR was also used to estimate adult mortality (between ages 15 and 59 years) based on information from 31 642 location-years of vital registration and sample registration data, 355 surveys and censuses, and 24 other sources. Estimates of child and adult mortality rates were then used to generate life tables with a relational model life table system. For countries with large HIV epidemics, life tables were adjusted using independent estimates of HIV-specific mortality generated via an epidemiological analysis of HIV prevalence surveys, antenatal clinic serosurveillance, and other data sources. Excess mortality due to the COVID-19 pandemic in 2020 and 2021 was determined by subtracting observed all-cause mortality (adjusted for late registration and mortality anomalies) from the mortality expected in the absence of the pandemic. Expected mortality was calculated based on historical trends using an ensemble of models. In location-years where all-cause mortality data were unavailable, we estimated excess mortality rates using a regression model with covariates pertaining to the pandemic. Population size was computed using a Bayesian hierarchical cohort component model. Life expectancy was calculated using age-specific mortality rates and standard demographic methods. Uncertainty intervals (UIs) were calculated for every metric using the 25th and 975th ordered values from a 1000-draw posterior distribution. FINDINGS: Global all-cause mortality followed two distinct patterns over the study period: age-standardised mortality rates declined between 1950 and 2019 (a 62·8% [95% UI 60·5–65·1] decline), and increased during the COVID-19 pandemic period (2020–21; 5·1% [0·9–9·6] increase). In contrast with the overall reverse in mortality trends during the pandemic period, child mortality continued to decline, with 4·66 million (3·98–5·50) global deaths in children younger than 5 years in 2021 compared with 5·21 million (4·50–6·01) in 2019. An estimated 131 million (126–137) people died globally from all causes in 2020 and 2021 combined, of which 15·9 million (14·7–17·2) were due to the COVID-19 pandemic (measured by excess mortality, which includes deaths directly due to SARS-CoV-2 infection and those indirectly due to other social, economic, or behavioural changes associated with the pandemic). Excess mortality rates exceeded 150 deaths per 100 000 population during at least one year of the pandemic in 80 countries and territories, whereas 20 nations had a negative excess mortality rate in 2020 or 2021, indicating that all-cause mortality in these countries was lower during the pandemic than expected based on historical trends. Between 1950 and 2021, global life expectancy at birth increased by 22·7 years (20·8–24·8), from 49·0 years (46·7–51·3) to 71·7 years (70·9–72·5). Global life expectancy at birth declined by 1·6 years (1·0–2·2) between 2019 and 2021, reversing historical trends. An increase in life expectancy was only observed in 32 (15·7%) of 204 countries and territories between 2019 and 2021. The global population reached 7·89 billion (7·67–8·13) people in 2021, by which time 56 of 204 countries and territories had peaked and subsequently populations have declined. The largest proportion of population growth between 2020 and 2021 was in sub-Saharan Africa (39·5% [28·4–52·7]) and south Asia (26·3% [9·0–44·7]). From 2000 to 2021, the ratio of the population aged 65 years and older to the population aged younger than 15 years increased in 188 (92·2%) of 204 nations. INTERPRETATION: Global adult mortality rates markedly increased during the COVID-19 pandemic in 2020 and 2021, reversing past decreasing trends, while child mortality rates continued to decline, albeit more slowly than in earlier years. Although COVID-19 had a substantial impact on many demographic indicators during the first 2 years of the pandemic, overall global health progress over the 72 years evaluated has been profound, with considerable improvements in mortality and life expectancy. Additionally, we observed a deceleration of global population growth since 2017, despite steady or increasing growth in lower-income countries, combined with a continued global shift of population age structures towards older ages. These demographic changes will likely present future challenges to health systems, economies, and societies. The comprehensive demographic estimates reported here will enable researchers, policy makers, health practitioners, and other key stakeholders to better understand and address the profound changes that have occurred in the global health landscape following the first 2 years of the COVID-19 pandemic, and longer-term trends beyond the pandemic. FUNDING: Bill & Melinda Gates Foundation
- …