51 research outputs found

    Trends in re-greening and soil degradation in western Niger

    Get PDF
    This paper studied the simultaneous evolutions of re-greening and soil degradation in the West of Niger between 1998 and 2017. It relied on in situ and cartographic observations to analyze the indices of vegetation and environmental degradation in cultivated and in a classified area (devoid of anthropogenic actions). In the classified area, the results show a tendency towards re-greening with a progression of at least 500% of vegetation index. In cultivated areas, on the other hand, the localized observations reveal two tendencies, one coherent showing the re-greening and the decrease of the degradation and the other paradoxical showing the re-greening and the extension of the degraded soils. The latter can be explained by the memory effect of the droughts of the years 1970-1990 but also by the way of resources management. Overall, we conclude on the trend towards re-greening and highlighting the resilience of the ecosystems studied to climate shock

    Risques D’inondation Et Proposition D’un Plan D’évacuation Des Eaux De Pluie Dans La Ville De KantchĂ©, RĂ©gion De Zinder Au Niger

    Get PDF
    Le Niger connait une hausse exponentielle du nombre d’inondations consĂ©cutives Ă  de fortes pluies. Ce nombre est passĂ© en moyenne Ă  moins de deux (2) par an avant 1990 Ă  plus de huit (8) par an au cours des annĂ©es 2000. Ainsi, ces inondations surviennent chaque annĂ©e dans l’ensemble des villes nigĂ©riennes mais aussi les zones rurales. La prĂ©sente Ă©tude porte sur le cas de la ville de KantchĂ© dans la rĂ©gion de Zinder qui, avec une population de 27615 habitants en 2012, est sujette aux inondations rĂ©currentes et aux problĂšmes d’assainissement liĂ©s Ă  la mauvaise gestion des eaux pluviales. A titre d’exemple cette commune a connu des inondations graves au cours des annĂ©es 1998, 2007, 2012 et tout rĂ©cemment en 2016, 2017 et 2018. Ces inondations ont occasionnĂ© de nombreux dĂ©gĂąts matĂ©riels : Effondrement d’habitations, des puits, ruptures des digues, perte de bĂ©tail, et perte en vies humaines. L’objectif global de l’étude vise Ă  analyser les facteurs de l’augmentation du ruissellement et de la recrudescence des inondations dans cette commune afin de proposer un plan d’évacuation des eaux pluviales. A travers une approche diachronique, il s’agit d’analyser les cartes d’occupation de sol dans le bassin versant de cette ville afin de faire un lien entre celles-ci et l’augmentation de ruissellement et du ravinement. Les donnĂ©es topographiques et gĂ©omorphologiques couplĂ©es aux observations de terrain, plus les informations collectĂ©es auprĂšs des populations de KantchĂ© permettent d’établir une cartographie des zones Ă  risque d’inondation afin de proposer un plan d’évacuation des eaux pluviales efficace. Niger faces very high raise in number of floods resulting from heavy rains. The average passes from two (2) per year before 1990 to over than eight (8) in the years 2000. These occur not only in towns, cities but also in Nigerien rural areas. This study deals with in the town of Kantche in Zinder region with a population of 27,615 people in 2012 and subjected to recurrent floods and sanitation problems in connection with the mismanagement of rain water. The commune has witnessed severe floods in 1998, 2007, 2012 and very recently in 2016, 2017 and 2018 the floods have engendered a number of damages: house and wells collapses, levee ruptures, kettle and even human loss. The overall objective of this study is to analyze factors that enhance the streaming and the recrudescence of floods in that community in to suggest vital solutions. Through this diachronic approach, land occupation maps are analyzed in the town basin in order to establish a link between the land occupation and the high streaming and furrow. Topographic and geomorphological data combined with field observations and information obtained from KantchĂ© populations will enable us to mapping flood risk zone in order to work out an efficient rain water draining map

    Spatial dynamic of mobile dunes, soil crusting and Yobe’s bank retreat in the Niger’s Lake Chad basin part: Cases of Issari and Bagara

    Get PDF
    The process of desertification is accelerated in the northern part of Lake Chad basin since the early 1970. Those processes linked to the recurrent drought and a heavy human pressure induced a great environmental damages. So this study based on diachronic cartography (1957, 1975 and 2007) aimed to describe and quantify the degradation dynamics in the contrasting Niger’s Lake Chad basin part. Thus significant environmental changes have been observed in this area from 1957 to 2007. Indeed in the Manga, the natural commodities and fields were threatened by mobile dunes making blocking with sand: the mobile dunes spread from ~200 ha in 1975 to ~900 ha in 2007 while they had not watched in 1957. In the fluvio-deltaic area of Kadzell, the soil crusting and the Yobe River retreat remain the major damages. The crusting area has been multiplied by more than two while the lateral migration of the Yobe bank reached near of 3 m.yr-1. This study highlights the key role of man in the process of degradation related to climate parametersKey words: Lake Chad, degradation dynamics, soil crusting, dunes, human activities

    Dynamique Hydro-Erosive Actuelle Des Bassins Versants Endoreiques De La Region De Niamey (Sud-Ouest Du Niger)

    Get PDF
    La gĂ©nĂ©ralisation du ravinement et la baisse de la productivitĂ© des terres sont quelques-unes des principales contraintes qui assaillent l’utilisation des sols au Sahel. Pour gĂ©rer efficacement ces sols, une Ă©valuation des processus hydro-Ă©rosifs est nĂ©cessaire. Ce travail a ainsi pour objectif d’analyser la dynamique hydro-Ă©rosive sur un site expĂ©rimental installĂ© depuis 2004 dans la rĂ©gion de Niamey (Niger). Sur ce site, le dispositif de mesure est composĂ© de huit parcelles de mesures de ruissellement et d’érosion, des stations hydromĂ©triques Ă  l’exutoire des deux bassins versants endorĂ©iques et de plusieurs piquets destinĂ©s aux suivis morpho-dynamiques des ravines. AprĂšs une dĂ©cennie d’observation, les ruissellements mesurĂ©s sur les parcelles se caractĂ©risent par une dynamique saisonniĂšre croissante sur les surfaces encroĂ»tĂ©es (croĂ»tes biologique et d’érosion) et dĂ©croissante sur les surfaces cultivĂ©es. Le coefficient de ruissellement varie de 5 % sur la surface cultivĂ©e Ă  58 % sur la croĂ»te d’érosion. Au cours des 10 annĂ©es de mesure, ce coefficient a connu une forte croissance en particulier sur la jachĂšre (+ 80 %) et sur la surface cultivĂ©e (+ 300 %), traduisant ainsi la dĂ©gradation des sols. A l’échelle des bassins versants, l’augmentation du coefficient de ruissellement s’accompagne d’une Ă©rosion arĂ©olaire qui dĂ©cape le sol Ă  une vitesse moyenne de 5 mm/an et d’une Ă©rosion linĂ©aire active, de l’ordre de 4 m3/an au niveau des ravines suivies. Les transferts sĂ©dimentaires qui en rĂ©sultent agissent sur le fonctionnement morpho-sĂ©dimentaire des cours d’eau. Des amĂ©nagements antiĂ©rosifs sont nĂ©cessaires pour dissiper les processus hydro-Ă©rosifs et prĂ©server les services Ă©cosystĂ©miques des sols des bassins. Widespread gullying and the declining land productivity are some of the main constraints plaguing land use in the Sahel. In order to effectively manage these soils, it has become necessary to assess the hydro-erosive processes. The current study, thus, aims at analyzing the hydro-erosion dynamics on an experimental site installed since 2004 in the Niamey region (Niger Republic). On this site, the measurement device is made up of eight runoff and erosion measurement plots, hydrometric stations at the outlet of the two endorheic watersheds and several stakes intended for morpho-dynamic monitoring of the gullies. After a decade of observation, the runoff measured on the plots is characterized by an increasing seasonal dynamic on encrusted surfaces (biological and erosion crusts) and a decreasing one on cultivated surfaces. The runoff coefficient varies from 5% on the cultivated area to 58% on the erosion crust. Over the 10 years of measurement, this coefficient has greatly increased, especially on the fallow (+ 80%) and on cultivated area (+ 300%); this increase consequently reflects soil degradation. At the watershed scale, the increase in the runoff coefficient is accompanied by area erosion (or the erosion of the area out of the basin) which strikes the soil at an average speed of 5 mm/year and active linear erosion measuring 4 m3/year as observed at the monitored (the ongoing investigated) gullies. The resulting sediment transfers act on the morpho-sedimentary functioning of rivers. Anti-erosion facilities are necessary to dissipate the hydro-erosive processes and preserve the ecosystem services of the soil in the basin

    Impact of Drought and Land – Use Changes on Surface – Water Quality and Quantity: The Sahelian Paradox

    Get PDF
    International audienceAfrique de l'Ouest a connu des conditions de sĂ©cheresse depuis la fin des annĂ©es 1960. Cette tendance a Ă©tĂ© particuliĂšrement Ă©vident dans le Sahel, mais semble avoir attĂ©nuĂ© dans la derniĂšre dĂ©cennie dans les rĂ©gions orientales et centrales de cette rĂ©gion. D'autre part, la pluviomĂ©trie annuelle reste trĂšs faible dans la partie ouest du Sahel [ 1 ]. Une diminution correspondante a Ă©galement Ă©tĂ© observĂ© dans le dĂ©bit moyen annuel des fleuves SĂ©nĂ©gal et Niger, qui sont le plus grand dans la rĂ©gion et principalement alimentĂ© par l'eau provenant de rĂ©gions tropicales humides. Toutefois, le pourcentage de diminution du dĂ©bit annuel moyen Ă©tait presque deux fois plus grande que la diminution des prĂ©cipitations [ 2 ] pour la pĂ©riode 1970-2010. Des tendances similaires ont Ă©tĂ© observĂ©es sur des rĂ©seaux hydrographiques plus petits. En revanche, mĂȘme si le Sahel et la plupart de l'Afrique de l'Ouest ont connu la sĂ©cheresse aussi importante au cours des 40 derniĂšres annĂ©es, les coefficients de ruissellement et des dĂ©bits d'eau ont augmentĂ© dans la plupart des rĂ©gions du Sahel. Ce phĂ©nomĂšne a Ă©tĂ© appelĂ© «Le Sahel Paradox" aprĂšs l'augmentation de la nappe phrĂ©atique au Niger depuis les annĂ©es 1960, a Ă©tĂ© nommĂ© le paradoxe de Niamey et attribuĂ©s Ă  des changements importants dans l'utilisation des terres. Le les (Afrique multidisciplinaire de la mousson d'analyse) programmes AMMA HAPEX-Sahel (hydrologique et ExpĂ©rience atmosphĂ©rique pilote) et ont fourni, parmi de nombreux rĂ©sultats complets, les mesures de valeur portant sur les variations spatiales et temporelles de la teneur en eau du sol sahĂ©lienne ainsi que de l'infiltration de l'eau Ă  travers les couches profondes du sol de la zone non saturĂ©e. Le but de ce chapitre est de fournir un aperçu du comportement hydrologique en Afrique de l'Ouest basĂ©e sur le point, locale, mĂ©so et Ă©chelles rĂ©gionales observations

    Observed long-term land cover vs climate impacts on the West African hydrological cycle: lessons for the future ? [P-3330-65]

    Get PDF
    West Africa has experienced a long lasting, severe drought as from 1970, which seems to be attenuating since 2000. It has induced major changes in living conditions and resources over the region. In the same period, marked changes of land use and land cover have been observed: land clearing for agriculture, driven by high demographic growth rates, and ecosystem evolutions driven by the rainfall deficit. Depending on the region, the combined effects of these climate and environmental changes have induced contrasted impacts on the hydrological cycle. In the Sahel, runoff and river discharges have increased despite the rainfall reduction (“less rain, more water”, the so-called "Sahelian paradox "). Soil crusting and erosion have increased the runoff capacity of the watersheds so that it outperformed the rainfall deficit. Conversely, in the more humid Guinean and Sudanian regions to the South, the opposite (and expected) “less rain, less water” behavior is observed, but the signature of land cover changes can hardly be detected in the hydrological records. These observations over the past 50 years suggest that the hydrological response to climate change can not be analyzed irrespective of other concurrent changes, and primarily ecosystem dynamics and land cover changes. There is no consensus on future rainfall trend over West Africa in IPCC projections, although a higher occurrence of extreme events (rainstorms, dry spells) is expected. An increase in the need for arable land and water resources is expected as well, driven by economic development and demographic growth. Based on past long-term observations on the AMMA-CATCH observatory, we explore in this work various future combinations of climate vs environmental drivers, and we infer the expected resulting trends on water resources, along the west African eco-climatic gradient. (Texte intĂ©gral

    Evolution of Surface Hydrology in the Sahelo-Sudanian Strip: An Updated Review

    Get PDF
    In the West African Sahel, two paradoxical hydrological behaviors have occurred during the last five decades. The first paradox was observed during the 1968–1990s ‘Great Drought’ period, during which runoff significantly increased. The second paradox appeared during the subsequent period of rainfall recovery (i.e., since the 1990s), during which the runoff coefficient continued to increase despite the general re-greening of the Sahel. This paper reviews and synthesizes the literature on the drivers of these paradoxical behaviors, focusing on recent works in the West African Sahelo/Sudanian strip, and upscaling the hydrological processes through an analysis of recent data from two representative areas of this region. This paper helps better determine the respective roles played by Land Use/Land Cover Changes (LULCC), the evolution of rainfall intensity and the occurrence of extreme rainfall events in these hydrological paradoxes. Both the literature review and recent data converge in indicating that the first Sahelian hydrological paradox was mostly driven by LULCC, while the second paradox has been caused by both LULCC and climate evolution, mainly the recent increase in rainfall intensity

    Etats de surface et fonctionnement hydrodynamique multi-échelles des bassins sahéliens ; études expérimentales en zones cristalline et sédimentaire

    No full text
    This work aims at characterizing and comparing the hydrodynamical functioning at several spatial scales within the granitic-basement and sedimentary zones of Western Niger. Then, a simple hydrological model that could be suitable for use at larger scales is proposed and tested.Qualitatively, the two geological domains have common and specific surface features.The experimental work carried out onto common surface features (biological crust, BIOL; erosion crust, ERO; fallow structural surface, ST and cultivated, C) shows that, at the point scale, ERO has the same hydraulic conductivity K value in both contexts. On the other hand, surfaces features C and especially ST have lower K values in granitic context.Monitoring of the ST and C sites along the rainy season proved the stationarity of the ST conductivity value. On the contrary, K varies widely with the amount of rain received from an initial value of 170 mm/h after weeding down to 20 mm/h (i.e. the ST measured value) after 70 mm of rain and even 10 mm/h after 180 mm of rain. This variation shows the short-term benefit of weeding onto infiltration but a degradation of the soil surface on the long term.At the plot scale (10 m2), runoff measurements are consistent with point measurements. ERO has the same runoff coefficient (Kr) in granitic and sedimentary zones while ST and C surfaces have a higher Kr in granitic context.Runoff monitoring of the granitic site cultivated plots showed that from a total of 63 rain events between 2011 and 2013, 22 had a Kr value higher than the average value (0.25) from which 2/3 are observed after the surface had received more than 70 mm rain after weeding.Results obtained at the two scales (point and 10-m2 plot) are thus consistent and show that the cultivated surface gets crusted and may produce runoff more than fallow ST sites and as much as ERO features.At the basin scale (5 ha), Kr values are higher in the granitic site, not only because of the higher Kr value for a given surface feature but also because of the specific low-infiltrating surfaces which are granite outcrops and gravel crusts (Kr = 0.58).At the three previous scales (point, plot and small basin), runoff volume was found independent of soil initial moisture.Using the previous point-scale results in a Green-Ampt infiltration model led to calibrate the wetting front pressure head for each surface feature and to satisfactorily describe runoff volumes obtained at the plot scale.By estimating runoff with the Green-Ampt infiltration model at any given point, basin-scale hydrograms were obtained by adding the contribution of all elementary surfaces. Assuming no re-infiltration of runoff water within the basins, a simple transfer function was chosen accounting for the distance of each surface to the hydrological network, a constant water velocity of 0.05 m.s-1 and a volume of 3-4 mm of water necessary to fill the kori sand cover, which is much less than that in the sedimentary context. Finally, simulated hydrograms reproduce nicely the measured ones, which offers the perspective of applying some principles of the model to larger basins.Ce travail vise Ă  caractĂ©riser et comparer les fonctionnements hydrodynamiques Ă  plusieurs Ă©chelles spatiales en zones cristalline et sĂ©dimentaire de l’Ouest nigĂ©rien et par suite Ă  proposer un modĂšle simple de fonctionnement hydrodynamique des bassins expĂ©rimentaux cristallins qui soit potentiellement transposable aux Ă©chelles supĂ©rieures.L’analyse qualitative du paysage montre que ces deux domaines ont des Ă©tats de surface communs et spĂ©cifiques.L’étude expĂ©rimentale effectuĂ©e sur les Ă©tats de surface communs (surface biologique, BIOL, d’érosion, ERO, structurale, ST-jac, et cultivĂ©e, C) montre, Ă  l’échelle ponctuelle, que la surface ERO a la mĂȘme valeur de conductivitĂ© hydraulique K dans les deux contextes. En revanche, les surfaces C et surtout ST ont des conductivitĂ©s plus faibles en zone cristalline. Le suivi temporel effectuĂ© sur ces deux Ă©tats de surface en zone cristalline a mis en Ă©vidence la stationnaritĂ© de la conductivitĂ© sur ST (jachĂšre de 5 ans) durant la saison des pluies tandis qu'elle varie fortement sur la surface cultivĂ©e en fonction du calendrier cultural et du cumul de pluie. K dĂ©croit d’une valeur initiale de 170 mm/h aprĂšs le sarclage Ă  20 mm/h (soit la conductivitĂ© mesurĂ©e sur ST) lorsque la surface sarclĂ©e reçoit un cumul de pluie de l’ordre de 70 mm. La conductivitĂ© atteint mĂȘme la valeur de 10 mm/h aprĂšs un cumul de pluie de 180 mm. Cette variation de la conductivitĂ© montre l’avantage Ă  court terme du sarclage qui amĂ©liore l’infiltration mais qui Ă  long terme tend Ă  dĂ©grader la surface.Les rĂ©sultats obtenus Ă  l’échelle de la surface Ă©lĂ©mentaire (10 mÂČ) valident bien les mesures ponctuelles. La surface ERO a le mĂȘme coefficient du ruissellement (Kr) en zones cristalline et sĂ©dimentaire tandis que les surfaces ST et cultivĂ©e ont un Kr plus Ă©levĂ© en zone cristalline. L’analyse de l’évolution temporelle du Kr de la surface cultivĂ©e du socle a montrĂ© que sur 63 Ă©vĂ©nements pluvieux observĂ©s entre 2011 et 2013, 22 ont un Kr supĂ©rieur Ă  la moyenne (qui est de 0.25) dont prĂšs de 2/3 sont observĂ©s aprĂšs plus de 70 mm de pluie qui suivent le sarclage. Les rĂ©sultats obtenus Ă  ces deux Ă©chelles (ponctuelle et surface Ă©lĂ©mentaire) sont donc cohĂ©rents et montrent que la surface cultivĂ©e s’encroĂ»te et peut ruisseler plus que la surface ST et autant que la surface ERO. A l’échelle du bassin versant (5 ha), les Kr sont plus Ă©levĂ©s sur les bassins cristallins Ă  cause de ces fortes valeurs de Kr des surfaces Ă©lĂ©mentaires mais aussi parce qu’ils sont composĂ©s d’autres surfaces Ă  forte capacitĂ© ruisselante que sont la surface d’affleurement du socle altĂ©rĂ© et la surface gravillonnaire ayant un Kr de 0.58. A ces trois Ă©chelles (ponctuelle, Ă©lĂ©mentaire, petit bassin), on note la non-dĂ©pendance du fonctionnement hydrodynamique Ă  l'Ă©tat hydrique initial.L’exploitation des rĂ©sultats ponctuels obtenus sur le site cristallin (conductivitĂ© moyenne de BIOL, ERO, et ST et conductivitĂ© variable sur la surface cultivĂ©e) dans le modĂšle de Green et Ampt a permis de caler le potentiel de front par Ă©tat de surface et dĂ©crire de maniĂšre trĂšs satisfaisante les ruissellements mesurĂ©s sur les surfaces Ă©lĂ©mentaires. Sur la base des ruissellements ainsi calculĂ©s, nous avons simulĂ© les hydrogrammes Ă  l’exutoire des bassins expĂ©rimentaux en assimilant le fonctionnement de ces derniers Ă  celui des surfaces Ă©lĂ©mentaires en spatialisant leur infiltrabilitĂ©. En faisant l’hypothĂšse d’une rĂ©-infiltration nulle sur les versants, nous avons appliquĂ© une fonction de transfert simple prenant en compte la distance de chaque surface Ă©lĂ©mentaire par rapport au rĂ©seau hydrographique, une vitesse d'Ă©coulement constante et une pluie imbibante de 3 Ă  4 mm devant saturer la couverture sableuse de ravine, ce qui est beaucoup moins qu'en zone sĂ©dimentaire. Finalement, les hydrogrammes simulĂ©s reproduisent assez bien les caractĂ©ristiques des hydrogrammes mesurĂ©s, ce qui offre une perspective d’application de certains principes du modĂšle sur de plus grands bassins

    Soil surface features and hydrodynamical multi-scales behaviour of sahelian basins ; experimental studies in crystalline and sedimentary zones

    No full text
    Ce travail vise Ă  caractĂ©riser et comparer les fonctionnements hydrodynamiques Ă  plusieurs Ă©chelles spatiales en zones cristalline et sĂ©dimentaire de l’Ouest nigĂ©rien et par suite Ă  proposer un modĂšle simple de fonctionnement hydrodynamique des bassins expĂ©rimentaux cristallins qui soit potentiellement transposable aux Ă©chelles supĂ©rieures.L’analyse qualitative du paysage montre que ces deux domaines ont des Ă©tats de surface communs et spĂ©cifiques.L’étude expĂ©rimentale effectuĂ©e sur les Ă©tats de surface communs (surface biologique, BIOL, d’érosion, ERO, structurale, ST-jac, et cultivĂ©e, C) montre, Ă  l’échelle ponctuelle, que la surface ERO a la mĂȘme valeur de conductivitĂ© hydraulique K dans les deux contextes. En revanche, les surfaces C et surtout ST ont des conductivitĂ©s plus faibles en zone cristalline. Le suivi temporel effectuĂ© sur ces deux Ă©tats de surface en zone cristalline a mis en Ă©vidence la stationnaritĂ© de la conductivitĂ© sur ST (jachĂšre de 5 ans) durant la saison des pluies tandis qu'elle varie fortement sur la surface cultivĂ©e en fonction du calendrier cultural et du cumul de pluie. K dĂ©croit d’une valeur initiale de 170 mm/h aprĂšs le sarclage Ă  20 mm/h (soit la conductivitĂ© mesurĂ©e sur ST) lorsque la surface sarclĂ©e reçoit un cumul de pluie de l’ordre de 70 mm. La conductivitĂ© atteint mĂȘme la valeur de 10 mm/h aprĂšs un cumul de pluie de 180 mm. Cette variation de la conductivitĂ© montre l’avantage Ă  court terme du sarclage qui amĂ©liore l’infiltration mais qui Ă  long terme tend Ă  dĂ©grader la surface.Les rĂ©sultats obtenus Ă  l’échelle de la surface Ă©lĂ©mentaire (10 mÂČ) valident bien les mesures ponctuelles. La surface ERO a le mĂȘme coefficient du ruissellement (Kr) en zones cristalline et sĂ©dimentaire tandis que les surfaces ST et cultivĂ©e ont un Kr plus Ă©levĂ© en zone cristalline. L’analyse de l’évolution temporelle du Kr de la surface cultivĂ©e du socle a montrĂ© que sur 63 Ă©vĂ©nements pluvieux observĂ©s entre 2011 et 2013, 22 ont un Kr supĂ©rieur Ă  la moyenne (qui est de 0.25) dont prĂšs de 2/3 sont observĂ©s aprĂšs plus de 70 mm de pluie qui suivent le sarclage. Les rĂ©sultats obtenus Ă  ces deux Ă©chelles (ponctuelle et surface Ă©lĂ©mentaire) sont donc cohĂ©rents et montrent que la surface cultivĂ©e s’encroĂ»te et peut ruisseler plus que la surface ST et autant que la surface ERO. A l’échelle du bassin versant (5 ha), les Kr sont plus Ă©levĂ©s sur les bassins cristallins Ă  cause de ces fortes valeurs de Kr des surfaces Ă©lĂ©mentaires mais aussi parce qu’ils sont composĂ©s d’autres surfaces Ă  forte capacitĂ© ruisselante que sont la surface d’affleurement du socle altĂ©rĂ© et la surface gravillonnaire ayant un Kr de 0.58. A ces trois Ă©chelles (ponctuelle, Ă©lĂ©mentaire, petit bassin), on note la non-dĂ©pendance du fonctionnement hydrodynamique Ă  l'Ă©tat hydrique initial.L’exploitation des rĂ©sultats ponctuels obtenus sur le site cristallin (conductivitĂ© moyenne de BIOL, ERO, et ST et conductivitĂ© variable sur la surface cultivĂ©e) dans le modĂšle de Green et Ampt a permis de caler le potentiel de front par Ă©tat de surface et dĂ©crire de maniĂšre trĂšs satisfaisante les ruissellements mesurĂ©s sur les surfaces Ă©lĂ©mentaires. Sur la base des ruissellements ainsi calculĂ©s, nous avons simulĂ© les hydrogrammes Ă  l’exutoire des bassins expĂ©rimentaux en assimilant le fonctionnement de ces derniers Ă  celui des surfaces Ă©lĂ©mentaires en spatialisant leur infiltrabilitĂ©. En faisant l’hypothĂšse d’une rĂ©-infiltration nulle sur les versants, nous avons appliquĂ© une fonction de transfert simple prenant en compte la distance de chaque surface Ă©lĂ©mentaire par rapport au rĂ©seau hydrographique, une vitesse d'Ă©coulement constante et une pluie imbibante de 3 Ă  4 mm devant saturer la couverture sableuse de ravine, ce qui est beaucoup moins qu'en zone sĂ©dimentaire. Finalement, les hydrogrammes simulĂ©s reproduisent assez bien les caractĂ©ristiques des hydrogrammes mesurĂ©s, ce qui offre une perspective d’application de certains principes du modĂšle sur de plus grands bassins.This work aims at characterizing and comparing the hydrodynamical functioning at several spatial scales within the granitic-basement and sedimentary zones of Western Niger. Then, a simple hydrological model that could be suitable for use at larger scales is proposed and tested.Qualitatively, the two geological domains have common and specific surface features.The experimental work carried out onto common surface features (biological crust, BIOL; erosion crust, ERO; fallow structural surface, ST and cultivated, C) shows that, at the point scale, ERO has the same hydraulic conductivity K value in both contexts. On the other hand, surfaces features C and especially ST have lower K values in granitic context.Monitoring of the ST and C sites along the rainy season proved the stationarity of the ST conductivity value. On the contrary, K varies widely with the amount of rain received from an initial value of 170 mm/h after weeding down to 20 mm/h (i.e. the ST measured value) after 70 mm of rain and even 10 mm/h after 180 mm of rain. This variation shows the short-term benefit of weeding onto infiltration but a degradation of the soil surface on the long term.At the plot scale (10 m2), runoff measurements are consistent with point measurements. ERO has the same runoff coefficient (Kr) in granitic and sedimentary zones while ST and C surfaces have a higher Kr in granitic context.Runoff monitoring of the granitic site cultivated plots showed that from a total of 63 rain events between 2011 and 2013, 22 had a Kr value higher than the average value (0.25) from which 2/3 are observed after the surface had received more than 70 mm rain after weeding.Results obtained at the two scales (point and 10-m2 plot) are thus consistent and show that the cultivated surface gets crusted and may produce runoff more than fallow ST sites and as much as ERO features.At the basin scale (5 ha), Kr values are higher in the granitic site, not only because of the higher Kr value for a given surface feature but also because of the specific low-infiltrating surfaces which are granite outcrops and gravel crusts (Kr = 0.58).At the three previous scales (point, plot and small basin), runoff volume was found independent of soil initial moisture.Using the previous point-scale results in a Green-Ampt infiltration model led to calibrate the wetting front pressure head for each surface feature and to satisfactorily describe runoff volumes obtained at the plot scale.By estimating runoff with the Green-Ampt infiltration model at any given point, basin-scale hydrograms were obtained by adding the contribution of all elementary surfaces. Assuming no re-infiltration of runoff water within the basins, a simple transfer function was chosen accounting for the distance of each surface to the hydrological network, a constant water velocity of 0.05 m.s-1 and a volume of 3-4 mm of water necessary to fill the kori sand cover, which is much less than that in the sedimentary context. Finally, simulated hydrograms reproduce nicely the measured ones, which offers the perspective of applying some principles of the model to larger basins
    • 

    corecore