41 research outputs found

    Performance Evaluation of Models Established for the Estimation of Diffused Solar Radiation: Case Study Lahore, Pakistan

    Get PDF
    A suitable design of solar power project requires accurate measurements of solar radiation for the site ofinvestigation. Such measurements play a pivotal role in the installation of PV systems. While conducting such studies,in general, global solar radiation (GSR) is recorded, whereas diffuse component of solar radiation on a horizontalsurface is seldom recorded. The objective of the present study is to assess diffuse solar radiation (DSR) on horizontalsurfaces by using polynomial models for Lahore, Pakistan (27.89 N, 78.08 E) and by correlating clearness index withdiffuse fraction. The established models are compared with some of the existing models from the literature.Performance of models is evaluated by employing five goodness-of-fit (GoF) tests that are, mean bias error (MBE),root mean square (RMSE), Coefficient of Determination (R2), Mean Absolute Percentage Error (MAPE) and Akaike’sInformation Criterion (AIC). The comparison of the results of goodness-of-fit tests with those of existing modelsindicate that the models established in the present study are performed better as compared to the existing models. Thevalues of statistical error analysis further suggested that a cubic model with a good accuracy of 97.5% and AIC of -22.8is relatively more suitable for this climatic region for estimating diffuse solar radiation. The study shows that the modeldeveloped is in good agreement with Elhadidy and Nabi model with an accuracy of 96.1% and AIC of 4.4 andsatisfactory results are obtained for Lahore. The findings can help to give a generous understanding of solar radiation inorder to optimize the solar energy conversion systems. The results of this study provide a better understanding of theassociations between global solar radiation, clearness index and diffused fraction for the region under study

    Blockchain-based Multifactor Authentication for Future 6G Cellular Networks: A Systematic Review

    Get PDF
    There are continued advances in the internet and communication fields regarding the deployment of 5G-based applications. It is expected that by 2030, 6G applications will emerge as a continued evolution of the mobile network. Blockchain technology is one of the leading supporting technologies predicted to provide a secure and unique network to 6G-enabled devices, transactions, and applications. It is anticipated that the 6G mobile networks will be virtualized, have cloud-based systems, and aim to be the foundation for the Internet of Everything. However, along with the development of communication technologies, threats from malicious parties have become more sophisticated, making security a significant concern for the 6G era in the future. Despite enormous efforts by researchers to improve security and authentication protocols, systems still face novel intrusion and attacks. Recently, multifactor authentication techniques (MFA) have been deployed as potential solutions to attacks in blockchains. The 6G applications and the cellular network have specific vulnerabilities that need to be addressed using blockchain-based MFA technologies. The current paper is a systematic review that discusses the three technologies under consideration; then, several studies are reviewed that discuss MFA techniques in general and use blockchains as potential solutions to future security and authentication issues that may arise for 6G application

    The development and validation of a scoring tool to predict the operative duration of elective laparoscopic cholecystectomy

    Get PDF
    Background: The ability to accurately predict operative duration has the potential to optimise theatre efficiency and utilisation, thus reducing costs and increasing staff and patient satisfaction. With laparoscopic cholecystectomy being one of the most commonly performed procedures worldwide, a tool to predict operative duration could be extremely beneficial to healthcare organisations. Methods: Data collected from the CholeS study on patients undergoing cholecystectomy in UK and Irish hospitals between 04/2014 and 05/2014 were used to study operative duration. A multivariable binary logistic regression model was produced in order to identify significant independent predictors of long (> 90 min) operations. The resulting model was converted to a risk score, which was subsequently validated on second cohort of patients using ROC curves. Results: After exclusions, data were available for 7227 patients in the derivation (CholeS) cohort. The median operative duration was 60 min (interquartile range 45–85), with 17.7% of operations lasting longer than 90 min. Ten factors were found to be significant independent predictors of operative durations > 90 min, including ASA, age, previous surgical admissions, BMI, gallbladder wall thickness and CBD diameter. A risk score was then produced from these factors, and applied to a cohort of 2405 patients from a tertiary centre for external validation. This returned an area under the ROC curve of 0.708 (SE = 0.013, p  90 min increasing more than eightfold from 5.1 to 41.8% in the extremes of the score. Conclusion: The scoring tool produced in this study was found to be significantly predictive of long operative durations on validation in an external cohort. As such, the tool may have the potential to enable organisations to better organise theatre lists and deliver greater efficiencies in care

    Acute-on-chronic liver failure: consensus recommendations of the Asian Pacific Association for the Study of the Liver (APASL) 2014

    Full text link

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    Optimal Path Routing Protocol for Warning Messages Dissemination for Highway VANET

    No full text
    In vehicular ad hoc networks (VANETs), helpful information dissemination establishes the foundation of communication. One of the significant difficulties in developing a successful dissemination system for VANETs is avoiding traffic fatalities. Another essential success metric is the transfer of reliable and secure warning messages through the shortest path, particularly on highways with high mobility. Clustering vehicles is a general solution to these challenges, as it allows warning alerts to be re-broadcast to nearby clusters by fewer vehicles. Hence, trustworthy cluster head (CH) selections are critical to decreasing the number of retransmissions. In this context, we suggest a clustering technique called Optimal Path Routing Protocol for Warning Messages (OPRP) for dissemination in highway VANETs. OPRP relies on mobility measured to reinforce cluster creation, evade transmission overhead, and sustain message authenticity in a high mobility environment. Moreover, we consider communication between the cluster heads to reduce the number of transmissions. Furthermore, the cluster head is chosen using the median technique based on an odd or even number of vehicles for a stable and lengthy cluster life. By altering traffic densities and speeds, OPRP is compared with prominent schemes. Simulation results revealed that OPRP offers enhanced throughput, end-to-end delay, maximizing packet delivery ratio, and message validity

    Designing Future Wireless Networks (FWN)s With Net Zero (NZ) and Zero Touch (ZT) Perspective

    No full text
    Recent research in Future Wireless Networks (FWN)s have primarily focused on improving spectral and energy efficiency, emphasizing less on reducing power consumption. Studies on current Fifth-Generation (5G) system deployment have shown that they consume more power than their predecessors, thus highlighting the need for significant efforts to minimize their carbon footprint. This work specifically focuses on the power consumption considerations, starting from the transceiver design and extending to an entire network design that can accomplish future Net Zero (NZ) targets. It is envisioned that smart grid-controlled renewable-powered systems, combined with artificial intelligence (AI) algorithms and Zero Touch (ZT) solutions, will play a central role to achieve Net Zero - Zero Touch Future Wireless Networks (NZ-ZT-FWNs). This work thoroughly investigates the recent research efforts, limitations of existing approaches and identifies key research areas for realizing NZ-ZT-FWNs
    corecore