74 research outputs found

    The ubiquitin system: pathogenesis of human diseases and drug targeting

    Get PDF
    AbstractWith the many processes and substrates targeted by the ubiquitin pathway, it is not surprising to find that aberrations in the system underlie, directly or indirectly, the pathogenesis of many diseases. While inactivation of a major enzyme such as E1 is obviously lethal, mutations in enzymes or in recognition motifs in substrates that do not affect vital pathways or that affect the involved process only partially may result in a broad array of phenotypes. Likewise, acquired changes in the activity of the system can also evolve into certain pathologies. The pathological states associated with the ubiquitin system can be classified into two groups: (a) those that result from loss of function-mutation in a ubiquitin system enzyme or in the recognition motif in the target substrate that lead to stabilization of certain proteins, and (b) those that result from gain of function-abnormal or accelerated degradation of the protein target. Studies that employ targeted inactivation of genes coding for specific ubiquitin system enzymes and substrates in animals can provide a more systematic view into the broad spectrum of pathologies that may result from aberrations in ubiquitin-mediated proteolysis. Better understanding of the processes and identification of the components involved in the degradation of key regulatory proteins will lead to the development of mechanism-based drugs that will target specifically only the involved proteins

    Epigenetic Regulation of KPC1 Ubiquitin Ligase Affects the NF-ÎșB Pathway in Melanoma.

    Get PDF
    Purpose: Abnormal activation of the NF-ÎșB pathway induces a more aggressive phenotype of cutaneous melanoma. Understanding the mechanisms involved in melanoma NF-ÎșB activation may identify novel targets for this pathway. KPC1, an E3 ubiquitin ligase, is a regulator of the NF-ÎșB pathway. The objective of this study was to investigate the mechanisms regulating KPC1 expression and its clinical impact in melanoma.Experimental Design: The clinical impact of KPC1 expression and its epigenetic regulation were assessed in large cohorts of clinically well-annotated melanoma tissues (tissue microarrays; n = 137, JWCI cohort; n = 40) and The Cancer Genome Atlas database (TCGA cohort, n = 370). Using melanoma cell lines, we investigated the functional interactions between KPC1 and NF-ÎșB, and the epigenetic regulations of KPC1, including DNA methylation and miRNA expression.Results: We verified that KPC1 suppresses melanoma proliferation by processing NF-ÎșB1 p105 into p50, thereby modulating NF-ÎșB target gene expression. Concordantly, KPC1 expression was downregulated in American Joint Committee on Cancer stage IV melanoma compared with early stages (stage I/II P = 0.013, stage III P = 0.004), and low KPC1 expression was significantly associated with poor overall survival in stage IV melanoma (n = 137; HR 1.810; P = 0.006). Furthermore, our data showed that high miR-155-5p expression, which is controlled by DNA methylation at its promoter region (TCGA; Pearson\u27s r -0.455; P \u3c 0.001), is significantly associated with KPC1 downregulation (JWCI; P = 0.028, TCGA; P = 0.003).Conclusions: This study revealed novel epigenetic regulation of KPC1 associated with NF-ÎșB pathway activation, promoting metastatic melanoma progression. These findings suggest the potential utility of KPC1 and its epigenetic regulation as theranostic targets. Clin Cancer Res; 23(16); 4831-42. ©2017 AACR

    Synthetic polyubiquitinated α-Synuclein reveals important insights into the roles of the ubiquitin chain in regulating its pathophysiology

    Get PDF
    Ubiquitination regulates, via different modes of modifications, a variety of biological processes, and aberrations in the process have been implicated in the pathogenesis of several neurodegenerative diseases. However, our ability to dissect the pathophysiological relevance of the ubiquitination code has been hampered due to the lack of methods that allow site-specific introduction of ubiquitin (Ub) chains to a specific substrate. Here, we describe chemical and semisynthetic strategies for site-specific incorporation of K48-linked di- or tetra-Ub chains onto the side chain of Lys12 of α-Synuclein (α-Syn). These advances provided unique opportunities to elucidate the role of ubiquitination and Ub chain length in regulating α-Syn stability, aggregation, phosphorylation, and clearance. In addition, we investigated the cross-talk between phosphorylation and ubiquitination, the two most common α-Syn pathological modifications identified within Lewy bodies and Parkinson disease. Our results suggest that α-Syn functions under complex regulatory mechanisms involving cross-talk among different posttranslational modifications

    The Size of the Proteasomal Substrate Determines Whether Its Degradation Will Be Mediated by Mono- or Polyubiquitylation

    Get PDF
    A polyubiquitin chain anchored to the substrate has been the hallmark of proteasomal recognition. However, the degradation signal appears to be more complex and to contain also a substrate's unstructured region. Recent reports have shown that the proteasome can degrade also monoubiquitylated proteins, which adds an additional layer of complexity to the signal. Here, we demonstrate that the size of the substrate is an important determinant in its extent of ubiquitylation: a single ubiquitin moiety fused to a tail of up to ∌150 residues derived from either short artificial repeats or from naturally occurring proteins, is sufficient to target them for proteasomal degradation. Importantly, chemically synthesized adducts, where ubiquitin is attached to the substrate via a naturally occurring isopeptide bond, display similar characteristics. Taken together, these findings suggest that the ubiquitin proteasomal signal is adaptive, and is not always made of a long polyubiquitin chain

    Switches, Excitable Responses and Oscillations in the Ring1B/Bmi1 Ubiquitination System

    Get PDF
    In an active, self-ubiquitinated state, the Ring1B ligase monoubiquitinates histone H2A playing a critical role in Polycomb-mediated gene silencing. Following ubiquitination by external ligases, Ring1B is targeted for proteosomal degradation. Using biochemical data and computational modeling, we show that the Ring1B ligase can exhibit abrupt switches, overshoot transitions and self-perpetuating oscillations between its distinct ubiquitination and activity states. These different Ring1B states display canonical or multiply branched, atypical polyubiquitin chains and involve association with the Polycomb-group protein Bmi1. Bistable switches and oscillations may lead to all-or-none histone H2A monoubiquitination rates and result in discrete periods of gene (in)activity. Switches, overshoots and oscillations in Ring1B catalytic activity and proteosomal degradation are controlled by the abundances of Bmi1 and Ring1B, and the activities and abundances of external ligases and deubiquitinases, such as E6-AP and USP7

    Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018.

    Get PDF
    Over the past decade, the Nomenclature Committee on Cell Death (NCCD) has formulated guidelines for the definition and interpretation of cell death from morphological, biochemical, and functional perspectives. Since the field continues to expand and novel mechanisms that orchestrate multiple cell death pathways are unveiled, we propose an updated classification of cell death subroutines focusing on mechanistic and essential (as opposed to correlative and dispensable) aspects of the process. As we provide molecularly oriented definitions of terms including intrinsic apoptosis, extrinsic apoptosis, mitochondrial permeability transition (MPT)-driven necrosis, necroptosis, ferroptosis, pyroptosis, parthanatos, entotic cell death, NETotic cell death, lysosome-dependent cell death, autophagy-dependent cell death, immunogenic cell death, cellular senescence, and mitotic catastrophe, we discuss the utility of neologisms that refer to highly specialized instances of these processes. The mission of the NCCD is to provide a widely accepted nomenclature on cell death in support of the continued development of the field

    The 2009 Lindau Nobel Laureate Meeting: Aaron Ciechanover, Chemistry 2004

    No full text
    Aaron Ciechanover was born in Haifa, Israel in October 1947. He shared the Nobel Prize in Chemistry in 2004 with Avram Hershko and Irwin Rose for their discovery of ubiquitin-mediated protein degradation. When Ciechanover began his work on proteolysis, the field was outside the realm of scientific mainstream as many thought that the fundamental secrets relating to sequence specificity were relevant to the synthetic side, or code side. The notion that specific sequences could selectively guide a destructive process did not naturally occur to scientists including Ciechanover himself. The emergence of controversial evidence demonstrating a requirement for metabolic energy in intracellular protein degradation, refuted the idea that cellular proteolysis was an entirely exergonic process occurring in the lysosome and prompted Ciechanover, Hershko, and Rose to "launch an attack" on the system, in order to uncover true pathway. Later findings of Ciechanover and subsequent groups showed that not only was the process energy-dependent, but that 8% of the human genome is remarkably one large ubiquitin system. Following the recapitulation and reflection of his work, Ciechanover shares insights into his principal and philosophical approach to science and life altogether. The life and work of Aaron Ciechanover are deeply rooted and influenced by Judaism and Israel and it is therefore that with only brief intermission, Ciechanover spent his scientific career in Israel as he is - through his presence and work - able to contribute and shape presence and future of the State of Israel

    The complexity of recognition of ubiquitinated substrates by the 26S proteasome

    Get PDF
    AbstractThe Ubiquitin Proteasome System (UPS) was discovered in two steps. Initially, APF-1 (ATP-dependent proteolytic Factor 1) later identified as ubiquitin (Ub), a hitherto known protein of unknown function, was found to covalently modify proteins. This modification led to degradation of the tagged protein by – at that time – an unknown protease. This was followed later by the identification of the 26S proteasome complex which is composed of a previously identified Multi Catalytic Protease (MCP) and an additional regulatory complex, as the protease that degrades Ub-tagged proteins. While Ub conjugation and proteasomal degradation are viewed as a continued process responsible for most of the regulated proteolysis in the cell, the two processes have also independent roles. In parallel and in the years that followed, the hallmark signal that links the substrate to the proteasome was identified as an internal Lys48-based polyUb chain. However, since these initial findings were described, our understanding of both ends of the process (i.e. Ub-conjugation to proteins, and their recognition and degradation), have advanced significantly. This enabled us to start bridging the ends of this continuous process which suffered until lately from limited structural data regarding the 26S proteasomal architecture and the structure and diversity of the Ub chains. These missing pieces are of great importance because the link between ubiquitination and proteasomal processing is subject to numerous regulatory steps and are found to function improperly in several pathologies. Recently, the molecular architecture of the 26S proteasome was resolved in great detail, enabling us to address mechanistic questions regarding the various molecular events that polyubiquitinated (polyUb) substrates undergo during binding and processing by the 26S proteasome. In addition, advancement in analytical and synthetic methods enables us to better understand the structure and diversity of the degradation signal. The review summarizes these recent findings and addresses the extrapolated meanings in light of previous reports. Finally, it addresses some of the still remaining questions to be solved in order to obtain a continuous mechanistic view of the events that a substrate undergoes from its initial ubiquitination to proteasomal degradation. This article is part of a Special Issue entitled: Ubiquitin-Proteasome System. Guest Editors: Thomas Sommer and Dieter H. Wolf
    • 

    corecore