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SUMMARY

A polyubiquitin chain anchored to the substrate has
been the hallmark of proteasomal recognition.
However, the degradation signal appears to be
more complex and to contain also a substrate’s
unstructured region. Recent reports have shown
that the proteasome can degrade also monoubiqui-
tylated proteins, which adds an additional layer of
complexity to the signal. Here, we demonstrate that
the size of the substrate is an important determinant
in its extent of ubiquitylation: a single ubiquitin
moiety fused to a tail of up to �150 residues derived
from either short artificial repeats or from naturally
occurring proteins, is sufficient to target them for
proteasomal degradation. Importantly, chemically
synthesized adducts, where ubiquitin is attached to
the substrate via a naturally occurring isopeptide
bond, display similar characteristics. Taken together,
these findings suggest that the ubiquitin proteaso-
mal signal is adaptive, and is not always made of
a long polyubiquitin chain.

INTRODUCTION

Degradation of intracellular proteins via the ubiquitin-protea-

some system (UPS) is involved in the regulation of a broad array

of essential cellular processes, such as cell cycle progression,

differentiation, apoptosis, DNA repair, cellular quality control,

autophagy and regulation of transcription. UPS substrates are

modified initially by covalent attachment of ubiquitin (Ub), where

its carboxyl-terminal Gly76 usually generates an isopeptide

bond with an ε-amino group of an internal Lys of the substrate.

This is followed by generation of a polyUb chain where additional

moieties are typically conjugated to Lys48 of the previously

added Ub (Chau et al., 1989; Hershko and Ciechanover, 1998).
Ub chains are highly dynamic due to the opposite activities of

the E3 ligases and deubiquitylating enzymes (DUBs). These

enzymes, along with other proteins, such as E2s (Ub-carrier

proteins; Ub-conjugating enzymes - UBCs), determine not only

the nature of the Ub chain’s linkage(s) (Ub has seven Lys resi-

dues, all can be conjugated), but also the length of the chain

(from a single Ub modification to a long polymeric chain) (See

for example: Hibbert et al. [2011]; Kim et al. [2007]; Kirkpatrick

et al., [2006]; Saeki et al. [2009]).

The polyUb-tagged substrates are recognized and degraded

by the 26S proteasome which is a large (�2MDa) cryptic proteo-

lytic complex. It is comprised of two sub-complexes: the 20S

catalytic particle (CP), and the 19S regulatory particle (RP)

(Finley, 2009; Lander et al., 2012). The catalytic sites that are

responsible for hydrolysis of the substrate are located in the

interior of the 20S barrel. The 19S complex is further subdivided

into a ‘‘lid’’ and a ‘‘base.’’ The ‘‘base’’ consists of six ATPases

involved in unfolding and translocation of the substrate into the

20S CP, and additional subunits, among them Rpn10 and

Rpn13, involved in recognition of the polyUb chain (Finley,

2009; Husnjak et al., 2008; Lam et al., 2002; van Nocker et al.,

1996). Despite all that is currently known on the proteasome,

the mechanism(s) by which a protein substrate is recognized

and delivered into the catalytic chamber is not fully understood.

It is widely accepted that the proteasomal proteolytic signal is

generally bipartite: the first element is Ub which serves as an

in trans recognition signal for the adduct, whereas the second

is an intrinsic unfolded fragment in the substrate that serves as

a translocation initiation site and mediates entry of the substrate

into the proteolytic chamber (Fishbain et al., 2011; Prakash et al.,

2004; Takeuchi et al., 2007).

The paradigm in the Ub field has been that the minimal Ub

oligomer required for recognition by the proteasome is a tetraUb

chain (Thrower et al., 2000), and that proteins modified by

monoUb regulate nonproteolytic processes such as membrane

transport and regulation of transcription (Hicke, 2001). However,

an increasing number of reports have demonstrated that mono-

ubiquitylation or multiple monoubiquitylations can also serve as

proteolytic signals for the proteasome. For example, it has been
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shown that the paired box 3 (PAX3) protein, a regulator of muscle

differentiation, is degraded following monoubiquitylation on a

specific Lys residue (Boutet et al., 2007). Likewise, syndecan-4

(SDC4), a cell adhesion receptor that is required for cell migra-

tion, is monoubiquitylated on its cytoplasmic tail in a WNT/

DSH-dependent manner, and is subsequently degraded by the

proteasome (Carvallo et al., 2010). Studies on a-globin (Shaeffer

and Kania, 1995), ferritin (De Domenico et al., 2006), and lyso-

zyme (Hershko et al., 1984) also suggested proteasomal degra-

dation of these substrates following their monoubiquitylation.

Proteasomal processing of the NF-kB precursor p105 to the

active subunit p50 requires its modification by several single

Ub moieties (Kravtsova-Ivantsiv et al., 2009), and proteasomal

degradation of cyclin B1 (Dimova et al., 2012) and phospholipase

D (PLD) (Yin et al., 2010) also depend on multiple monoubiquity-

lations. Importantly, it was demonstrated that proteins made of

Ub fused to C-terminal extensions longer than 20 residues, are

efficiently degraded by the proteasome without further ubiquity-

lation (Shabek et al., 2009; Shabek et al., 2007; Verhoef et al.,

2009). The extension is probably homologous to the unstruc-

tured segment necessary in order to initiate entry of the entire

substrate into the proteasomal 20S CP. The minimal 20 resi-

dues-length of the extensionmay be necessary in order to bridge

the distance between the 19S recognition site(s) to the transloca-

tion machinery and/or the catalytic sites (Inobe et al., 2011;

Lander et al., 2012; Shabek and Ciechanover, 2010). Interest-

ingly, the naturally occurring Ub variant to which an open reading

frame of additional 19 residues is attached in frame (UBB+1;

van Leeuwen et al. [1998]), is stable (Lindsten et al., 2002;

Shabek et al., 2009). However, addition of a single amino acid

to the 19-residue extension renders this pathological protein

susceptible to proteasomal degradation without further ubiquity-

lation (Shabek et al., 2009). Collectively, these findings raise the

possibility that proteins of up to a certain length (i.e., above

a minimal length of 20 residues) can be degraded following

monoubiquitylation. Thus, the observed ability of the protea-

some to recognize a variety of signals raises the possibility that

degradation is not mediated by a homogenous long polymeric

chain, but rather by a signal that is variable and adapted to basic

characteristics of the substrates.

In the present study we demonstrate that proteins shorter

than �150 residues can be degraded following monoubiquityla-

tion. Longer proteins require polyubiquitylation to promote their

efficient proteolysis.

RESULTS

Isopeptide Bond-Linked Peptides Require a Free
Segment Longer than 20 Residues to Undergo
Proteasomal Degradation
We have previously shown that noncleavable Ub (UbVV) linearly

fused to the N-terminus of peptides longer than 20 residues

can be degraded by the proteasome without further ubiquityla-

tion. Shorter tailed fusions of Ub are stable (Shabek et al.,

2009). To further corroborate these findings using natural conju-

gates, we synthesized peptides of different lengths to which Ub

was conjugated in an isopeptide bond to an internal Lys residue.

Initially, we studied the degradation of pure histone H2B-derived
88 Molecular Cell 48, 87–97, October 12, 2012 ª2012 Elsevier Inc.
peptides of 8 and 31 residues where the Ubmoiety was attached

to Lys residues 4 and 27, respectively (denotedUb-8-K4 andUb-

31-K27). The first peptide has free segments of 3 and 4 residues

flanking the Ub-anchoring Lys, while the second contains free

segments of 26 and 4 residues (Figure 1Ai; Kumar et al.

[2011]). The longer peptide was rapidly degraded by purified

26S proteasome, whereas the shorter one was stable (Fig-

ure 1Aii). Proteasome inhibition resulted in stabilization of the

degradable conjugate (Figure 1Aiii). Next, it was important to

study whether for the proteasome to digest this adduct, the

free segment (up or downstream to the Ub-anchoring site) has

to be, as we hypothesized before, longer than 20 residues. To

that end, we synthesized a peptide of 31 residues with amino

acid sequence identical to the one described above, except

that the Ub moiety was attached to Lys16 (Ub-31-K16; Fig-

ure 1Bi; its analysis is shown in Figure S1). This monoubiquity-

lated peptide has two free segments of 15 residues on each

side of the Ub-anchoring site (Figure 1Bi). As can be seen in Fig-

ure 1Bii, this peptide was stable compared to its Ub-31-K27

counterpart. This finding strongly suggests that proteasomal

degradation of peptides that are modified with a single Ub

requires also a free segment longer than a minimal length.

A Single Ub Fused to a Polypeptide of �150 Residues
Can Target It for Proteasomal Degradation without
Additional Ubiquitylation: The Case of HA Repeats
At that point it was important to determine the maximal length of

such peptides, beyond which polyubiquitylation becomes

necessary for their degradation. Thus, we sought to establish

a set of substrates that will serve as a ‘‘length ruler.’’ To that

end, we first generated a noncleavable and nonpolymerizable

Ub, denoted LLUbVV where the C-terminal -G75G76 residues of

Ub were substituted with Val (UbVV) (Johnson et al., 1992), and

all internal Lys residues were substituted with Arg (lysine-less

Ub, LLUb). This Ub variant was fused linearly to polypeptides

comprised of an increasing number (six to twelve) of HA repeats

(Figure 2A; LLUb+79aa (6HA), LLUb+114aa (9HA) and LLUb+150aa

(12HA)]. In all these proteins, the extensions are predicted to

be unstructured/disordered (Figure S2A). We monitored the

stability of these fusion proteins and found that LLUb+79aa and

LLUb+114aa were rapidly degraded in a cell-free system, whereas

LLUb+150aa was more stable (Figure 2B). The HA repeat itself, to

which Ub was not fused, was stable (Figure S2B), strongly sug-

gesting that the proteasomal degradation was dependent on the

Ub moiety. Similar results were obtained in HEK293 cells (Fig-

ure 2C), where LLUb+79aa and LLUb+114aa were degraded effi-

ciently by the proteasome, whereas LLUb+150aa was rather

stable. To demonstrate that the fused peptide of 150 residues

can be degraded following polyubiquitylation, we generated

a similar protein to which polymerizable (yet noncleavable)

WTUb was fused (Ub+150aa). As shown in Figure 2D, this Ub

fusion was rapidly degraded by the proteasome following its

polyubiquitylation. Taken together these results and those that

follow raise the hypothesis that proteins of up to 150 residues

can be targeted to the proteasome by a single Ub moiety,

whereas larger proteins require polyubiquitylation. Mechanisti-

cally, it is possible that small proteins bind to the proteasome

efficiently following their monoubiquitylation, whereas for longer
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Figure 1. Isopeptide Bond-Linked Monoubiquitylated Peptides Require Free Segments Longer than a Minimal Length in Order To Be

Degraded by the 26S Proteasome

(A) (i) Schematic presentation of monoubiquitylated peptides with different length segments flanking the Ub-anchoring site (left panel). Ub was chemically

conjugated to Lys4 in an H2B-derived 8-mer peptide (Ub-8-K4), and to Lys27 in an H2B-derived 31-mer peptide (Ub-31-K27) as described under Experimental

Procedures. 1 and 2 mg of the purified monoubiquitylated peptides were resolved by SDS-PAGE and detected using coomassie blue staining (right panel). (ii) Ub-

8-K4 and Ub-31-K27 were subjected to ATP-dependent degradation in a cell-free system containing purified 26S proteasome. Reactions were incubated for the

indicated times. (iii) Degradation of Ub-31-K27 by the proteasome is sensitive to MG132. Reactions were carried out as described under (ii) and MG132 was

added as indicated.

(B) (i) Schematic presentation of Ub-31-K16. (ii) Ub-31-K16 and Ub-31-K27 were subjected to ATP-dependent proteasomal degradation as described under (A)

(ii). Rpt5 and a6 served as loading controls. Ub structure shown in all schemes is based on PDB: 1UBQ. In all degradation experiments, peptides were detected

after SDS-PAGE and Western blotting using anti-Ub antibody.
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proteins a single modification may not be sufficient: their

monoubiquitylated adducts may not bind at all or will bind

weakly, which renders their degradation inefficient. The inter-

action of nonpolymerizable and WTUb fused to 150 residues

with the proteasome was studied in HEK293 cells. It appears

that WTUb+150aa binds slightly stronger (�1.5-fold) to the

proteasome compared to LLUb+150aa (Figure S2C). To further

corroborate these findings in a different system, we expressed

LLUb+79aa and LLUb+150aa in yeast and followed their degrada-

tion. Similar to the findings in mammalian cells, LLUb+79aa was

extremely short-lived, whereas LLUb+150aa was stable (Fig-

ure S2D). Importantly, similar to mammalian cells, the binding

of the unstable LLUb+79aa to the yeast proteasome was signifi-

cantly tighter compared to that of its stable counterpart

LLUb+150aa (Figure S2Ei). We sought to rule out the remote possi-

bility that Ub may play a new, unexpected noncanonical role in

the degradation of short tailed Ub extensions, and show that

binding to the proteasome plays a role in the degradation of

these model substrates as well. Accordingly, we monitored the

degradation of such a substrate in a yeast Rpn10-deleted strain

(Drpn10). As can be seen in Figure S2Eii, Rpn10 is essential for

efficient degradation of LLUb+20aa and LLUb+79aa. As expected,

in bothWT and Rpn10-deleted strains, LLUb+150aa was stable. In
that context, it was also important to study the potential role of

Ub adaptors such as the UbL-UbA shuttle proteins Rad23 and

Dsk2 in mediating the transfer of the Ub fusion proteins to the

proteasome (Hartmann-Petersen and Gordon, 2004; Zhang

et al., 2009). As can be seen in Figure S2F, LLUb+79aa was

equally unstable in yeast strains lacking RAD23, DSK2 or both.

A Single Ub Fused to a Polypeptide of �150 Residues
Can Target It for Proteasomal Degradation without
Additional Ubiquitylation: The Case of GFP
To further investigate the relationship between the length of the

protein target and the requirement for its polyubiquitylation, we

studied the degradation of Ub fused to intact and truncated

derivatives of the Green Fluorescent Protein (GFP). Toward

that end, we fused UbVV and LLUbVV to GFP (the complete

GFP protein has 238 residues) (Figure 3A). It has been shown

by others that Ub fused to the complete protein can serve as

a degradation signal following its polyubiquitylation (Dantuma

et al., 2000; Johnson et al., 1992). As expected, UbVVGFP was

ubiquitylated both in a cell-free system and in cells, whereas

the LL derivative was not (Figure S3A). In correlation with this

finding, UbVVGFP was unstable in cells and its degradation

was sensitive to MG132, whereas the nonpolymerizable Ub
Molecular Cell 48, 87–97, October 12, 2012 ª2012 Elsevier Inc. 89
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Figure 2. The Susceptibility to Proteasomal

Degradation of a Single Ub-ModifiedHATag

Is Dependent on the Number of the Repeats

(A) Schematic presentation of lysine-less UbVVHis

(denoted: LLUb) extended by an increasing

number of HA tags - 6xHA (+79 amino acids; aa),

9xHA (+114aa) and 12xHA (+150aa).

(B) [35S]-labeled LLUbVV variants were subjected

to cell-free ATP-dependent degradation in the

presence of FrII. Degradationwas assessed based

on the radioactivity that had remained along time

relative to time 0.

(C) (i) Stability of LLUbVV variants was monitored in

HEK293 cells after the addition of CHX. MG132

was added as indicated. (ii) Quantitative repre-

sentation of the degradation of LLUbVV variants

shown in (i).

(D) (i) Cell-free ubiquitylation of [35S]-labeled

Ub+150 or LLUb+150 in the presence or absence of

HeLa cell extract. (ii) The stability of Ub+150 or

LLUb+150 was monitored in HEK293 cells as

described under (C) (i). The expressed proteins

were detected by Western blot using anti-HA

antibody. Tubulin was used to assess equal

protein loading. Ub always denotes WTUb that

contains the complete cohort of its lysine residues.
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derivative was stable (Figure 3B). Next, we generated a series of

truncated derivatives of UbVVGFP where the Ub moiety was

fused to the first 25, 40, 100, 120 and 150 residues of GFP (Fig-

ure 3Ci), andmonitored their stability. As shown in Figure 3Cii–iv,

and in consistency with the results obtained with Ub fused to the

HA repeats (Figure 2), experiments carried out in both cells (Fig-

ure 3Cii) and cell-free systems (Figure 3Ciii–iv) showed that

fusions containing up to 120 residues were unstable, whereas

the chimera that contains 150 residues was stable. This chimera

(WTUbVVGFP150) required exogenous Ub for its proteasomal

cell-free degradation (Figure 3Ciii and Figure S3B). As expected,

LLUbVVGFP150 was not degraded even following addition of free

Ub (Figure S3B).

A Single Ub Fused to a Polypeptide of �150 Residues
Can Target It for Proteasomal Degradation without
Additional Ubiquitylation: The Case of DHFR
Another protein we used in order to study the relationship

between the length of the UPS target substrate and the require-

ment for polyubiquitylation for its proteasomal degradation is

Dihydrofolate Reductase (DHFR). This protein (186 residues) is

unfolded and assumes a tight folded conformation in the pres-

ence of methotrexate (MTX)(Bolin et al., 1982; Johnston et al.,

1995). We studied the stability of DHFR to the N-terminus of

which we fused either WTUbVV or LLUbVV (Figure 4Ai). In cells,

UbVVDHFR was ubiquitylated, whereas the LL derivative was

not (Figure 4Aii). This ubiquitylation destabilized WTUb-DHFR

(Figure 4Aiii), whereas DHFR to which LLUb fused remained

stable (Figure 4Aiv). As expected, nonubiquitylated DHFR was

also stable (Figure 4Aiii). Addition of MTX inhibited the degrada-
90 Molecular Cell 48, 87–97, October 12, 2012 ª2012 Elsevier Inc.
tion of UbVVDHFR, most probably because the drug-bound

enzyme is tightly folded (Figure 4Aiv). To further test the ‘‘length

hypothesis,’’ we generated two chimeras where LLUb was fused

to the first 125 and 153 residues of DHFR (Figure 4Bi), and

monitored their degradation in cells. Both LLUbVVDHFR125 and

LLUbVVDHFR153 were degraded by the proteasome compared

to the intact LLUbVVDHFR that remained stable (Figure 4Bii).

Taken together, these findings strongly suggest that the size of

the protein plays an important role in determining the extent of

ubiquitylation required for its proteasomal degradation. The

stabilization of WTUb-DHFR by MTX corroborates previously

published data (Johnston et al., 1995; Prakash et al., 2004) that

an unstructured segment is necessary to initiate the degradation,

probably regardless and independently of the size of the protein.

Monoubiquitylation Is Sufficient to Target Small
Naturally Occurring Proteins for Proteasomal
Degradation
Our next aim was to identify physiological substrates that are

targeted following monoubiquitylation. We initially searched the

database for low molecular mass proteins, and in particular

those that may be regulated by proteolysis such as cell cycle

control and stress response proteins. Two such proteins are

the human cyclin-dependent kinases regulatory subunit 2

(Cks2) and the yeast Hug1. Cks2 is a 79 residues protein which

has an essential function in cell cycle progression. It binds to the

catalytic subunit of cyclin-dependent kinases and probably

targets them to their substrates (Pines, 1996). High levels of

Cks2 were observed in a broad range of human malignancies

(Liberal et al., 2012). Interestingly, a recent report has shown
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Figure 3. The Susceptibility to Proteasomal Degradation of a Single Ub Fused to GFP and Its Truncated Forms Is Dependent on the Length of

Fused Segment

(A) Schematic presentation of UbVV and LLUbVV fused to GFP.

(B) (i) Stability of UbVVGFP and LLUbVVGFP in HEK293 cells was monitored following the addition of CHX andMG132 as indicated. (ii) Quantitative representation

of the degradation of the proteins shown in (i).

(C) (i) Schematic presentation of LLUbVV extended by sequential truncations of GFP (UbVVGFP25 through UbVVGFP150). (ii) Degradation of UbVV and LLUbVV GFP

fusion variants in HEK293 cells after the addition of CHX orMG132. (iii) Degradation of [35S]-labeled UbVV- and LLUbVV-GFP fusion variants in a cell-free system in

the presence of FrII and in the presence or absence of Ub as indicated. (iv) The degradation of bacterially expressed and purified GFP (purified proteins are shown

in Figure S3C), UbVVGFP120 and UbVVGFP was monitored in the presence of purified 26S proteasome. MG132 was added as indicated. UbVVGFP variants were

detected using anti-Ub antibody. The 20S subunit a6 was used to assess equal protein loading.

Molecular Cell

Substrate’s Size Ubiquitylation and Degradation
that Cks2 is a short-lived protein (Eden et al., 2011), but itsmech-

anism of degradation had not been identified. To examine

whether Cks2 is targeted by the UPS, we first demonstrated

that it can be ubiquitylated in a cell-free system (Figure 5A).

Importantly, methylated Ub (MeUb), in which all the amino

groups (the N-terminal and those of the internal lysines) were

chemically modified - resulting in its inability to polymerize

(Hershko and Heller, 1985), was also conjugated to the protein

and generated mostly a single adduct. In contrast, WTUb gener-

ated several adducts, most of them of higher molecular mass.

Next, we demonstrated that MeUb stimulates degradation of

Cks2 in a cell-free system as efficiently as its WT counterpart
(Figure 5B), suggesting that polyUb chain synthesis is not

necessary in order to target the protein for degradation. As

a control, we used Ring1B, another bona fide substrate of the

UPS (Ben-Saadon et al., 2006) and demonstrated that its degra-

dation in the cell-free system is strongly inhibited by MeUb (Fig-

ure S4A). The degradation of Cks2 in both cell-free system and in

cells was proteasome-dependent, as it was sensitive to the

inhibitor MG132 (Figure 5C). Not surprisingly, it required also

internal lysines in the substrate as lysine-less Cks2 was stable

(Figure 5C). The degradation of Cks2 in both cell-free system

and in cells is accompanied by formation of Ub adducts which,

as expected, is less efficient for LLCks2 (Figure S4B). It should
Molecular Cell 48, 87–97, October 12, 2012 ª2012 Elsevier Inc. 91
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Figure 4. The Susceptibility to Proteasomal Degradation of a Single Ub Fused to DHFR and Its Truncated Forms Is Dependent on the Length

of Fused Segment

(A) (i) Schematic presentation of UbVVHis and LLUbVVHis fused to DHFR (denoted: UbVVDHFR, LLUbVVDHFR). (ii) Ubiquitylation of UbVVDHFR and LLUbVVDHFR

in HEK293 cells. All cells were co-transfected also by a cDNA coding for HA-Ub. Empty vector (EV) was used as a control. Cell lysates were immunoprecipitated

using anti-HA antibody and conjugates were visualized using anti-RGSHis (upper panel). 5% of the total cell lysates were resolved and proteins detected using

anti-RGSHis (lower panel). (iii) Time-dependent degradation of DHFR and UbVVDHFR in HEK293 cells after the addition of CHX or MG132. The proteins were

visualized using anti-RGSHis antibody, and tubulin was used to assess equal protein loading. (iv) The stability of UbVVDHFR and LLUbVVDHFR was monitored in

HEK293 cells as described under (iii). Methotrexate (MTX) or DMSO were added as indicated.

(B) (i) Schematic presentation of LLUbVV extended by different lengths fragments of DHFR (LLUbVVDHFR125 and LLUbVVDHFR153). (ii) Degradation of the

LLUbVVDHFR variants in HEK293 cells was carried out as described under A.

Molecular Cell

Substrate’s Size Ubiquitylation and Degradation
be noted that endogenous Cks2, like the expressed protein, was

also short-lived, and its degradation was dependent on the pro-

teasome (Figure 5D). Similarly, in cells, the degradation of Cks2

proceeded also in the presence of nonpolymerizable K0Ub (Fig-

ure 5E). In contrast, the degradation of Mdm2, a larger protein

substrate of the UPS, was significantly inhibited in cells express-

ing K0Ub (Figure 5E).

The yeast Hug1 is a 68 residues protein involved in theMec1p-

mediated checkpoint pathway that responds to DNA damage or

replication arrest (Basrai et al., 1999). First we established that

Hug1 is a UPS substrate that can be degraded following mono-

ubiquitylation. Similar to Cks2, Hug1 was ubiquitylated in a cell-

free system supplementedwith FrII andUb (Figure 6A) with lower

MW conjugates formed in the presence of the nonpolymerizable

Ub species K0Ub and MeUb. Also similar to Cks2, Hug1 was

degraded in a cell-free system in a WT-, K0Ub- and MeUb-

and proteasome-dependent modes (Figure 6B). In cells, the

protein was short-lived, and its degradation was sensitive to pro-

teasomal inhibition (Figure 6C). Last, we showed that in cells,

expression of K0Ub has no effect on the short life of Hug1, yet

it inhibits significantly the degradation of Mdm2 (Figure 6D). It

should be noted that unlike the fused Ub constructs (to HA

repeats, truncated GFP and truncated DHFR) that are unstruc-

tured, folding prediction of both Cks2 and Hug1 (Figure S5)
92 Molecular Cell 48, 87–97, October 12, 2012 ª2012 Elsevier Inc.
show that both proteins are largely folded. Taken together, these

results strongly suggest that the proteasomal degradation of

Cks2 and Hug1 does not require the formation of polyUb chains.

However, one cannot say with certainty whether these proteins

require multiple monoubiquitylations for their degradation, or

a modification by a single Ub moiety is sufficient. Mutational

analysis of the lysine anchors in both proteins will provide better

insight to this yet unsolved problem.

Finally, we sought to test the degradation of a larger substrate,

and we selected a-synuclein. The function(s) of this protein is

poorly understood, yet, point mutations and whole locus

multiplications have been implicated in the pathogenesis of

Parkinson disease and related neurodegenerative disorders

(Corti et al., 2011). This well-studied protein has 140 residues

which we hypothesize is at the upper limit of the size scale

of proteins we suggest are targeted by monoubiquitylation.

Multiple proteolytic pathways have been reported to be involved

in the degradation of a-synuclein, including the proteasome

(Bennett et al., 1999; Rott et al., 2011), the endosomal-lysosomal

system and autophagy (Cuervo et al., 2004; Tofaris et al.,

2011). To determine if monoubiquitylation is sufficient to target

a-synuclein for degradation, we generated monoubiquitylated

a-synuclein in which the Ub moiety is linked to Lys12 via an iso-

peptide bond (Figure 7A). The modified protein was degraded
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Figure 5. Cks2 Is Targeted for Proteasomal Degradation following Monoubiquitylation

(A) Cell-free conjugation of [35S]-labeled Cks2 was monitored in the presence of FrII and in the presence of either WTUb or the nonpolymerizable MeUb as

indicated.

(B) (i) Time-dependent degradation of [35S]-labeled Cks2 in FrII-containing cell-free system in the presence of WTUb or MeUb as indicated. (ii) Nonpolymerizable

Ub-dependent degradation of [35S]-labeled Cks2 in FrII-containing cell-free systems. WTUb or K0Ubwere added as indicated. A system supplemented only with

26S proteasome serves as a control for ubiquitylation dependence.

(C) (i) Cell-free degradation of [35S]-labeled Cks2 or LLCks2 in the presence of HeLa cell extract. MG132 was added as indicated. (ii) Cellular stability of Cks2HA

and LLCks2HA was monitored in a CHX chase experiment. MG132 was added as indicated. Proteins were visualized using anti-HA antibody and tubulin was

used to assess equal protein loading.

(D) Degradation of endogenous Cks2 was monitored as described under (C) (ii) using anti-Cks2 antibody.

(E) (i) Effect of WT and nonpolymerizable Ub on cellular degradation of Cks2 andMdm2. Cks2HA was co-expressed along with cDNAs coding for either WTUb or

K0Ub. Its cellular stability was monitored along with that of endogenous Mdm2 as described under (C) (ii). Cks2 was detected using anti-HA antibody and

endogenous Mdm2 was detected using anti-Mdm2 antibody. (ii) Quantitative presentation of the degradation of the proteins shown under (i).
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efficiently in a cell-free system containing purified 26S protea-

some. In contrast, unmodified a-synuclein was stable (Fig-

ure 7B). Thus, it appears that our hypothesis that modification
by a single Ub moiety can target proteins of up to 150 residues

for proteasomal degradation is true for naturally occurring

proteins.
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Figure 6. Hug1 Is Targeted for Proteasomal Degradation following Monoubiquitylation

(A) Cell-free conjugation of [35S]-labeled Hug1 supplemented with FrII in the presence of either K0Ub (K0), MeUb (Me), or WTUb (WT) as indicated.

(B) Degradation of [35S]-labeled Hug1 in FrII supplemented with either WTUb or K0Ub (i), or MeUb (ii). MG132 was added as indicated.

(C) Time-dependent degradation of Hug1-FLAG in HEK293 cells following the addition of CHX. MG132 was added as indicated.

(D) Effect of WT and nonpolymerizable Ub on the cellular degradation of Hug1 and Mdm2. cDNAs coding for the two proteins were co-transfected along with

a cDNA coding for K0Ub or an EV as indicated. The stability of Hug1 andMdm2wasmonitored as described under (C), and the proteins were visualized using anti-

FLAG and anti-HA antibodies. Tubulin was used to assess equal protein loading.
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DISCUSSION

It was suggested that the proteasome can recognize monoubi-

quitylated targets longer than 20 residues (Shabek et al., 2009;

Verhoef et al., 2009). This was demonstrated using linear Ub

fusion proteins that though occur in nature, are not the common

Ub adducts. In the current study we have further corroborated

these initial findings, now using peptides to which Ub is conju-

gated by an isopeptide bond that is the hallmark of degradable

natural UPS substrates (Figure 1). The main aim of this study

was to identify possible common features that characterize

substrates that are degraded following monoubiquitylation. As

a single Ub is sufficient to promote the proteasomal degradation

of peptides with a minimal length of 20 residues, it was important

to determine the maximal size of peptides/proteins the degrada-

tion of which can still be supported by a single Ub modification.

Synthesis of Ub molecules and assembly of polyUb chain is

energetically costly. Furthermore, we have shown that part of

the polyUb chain is degraded along with the substrate which is

also costly (Shabek et al., 2009). Thus, it seems that not all

substrates should require an equally long polyUb chain for their

proteasomal degradation, and that the proteolytic signal is

adaptive. Mechanistically, one can envision that in the cell the

ubiquitylation and degradationmachineries are found in a loosely

associated complex. As Ubmoieties are added to the substrate-

bound elongating Ub chain, the affinity of the conjugate to the

proteasome increases. Once the affinity is high enough to secure

stable binding of the adduct to the proteasome, it is detached

from the conjugating machinery, binds to the proteasome, and
94 Molecular Cell 48, 87–97, October 12, 2012 ª2012 Elsevier Inc.
is degraded processively and efficiently. With larger substrates,

a longer polyUb chain may become necessary. That because

a single Ub moiety or a short chain are not sufficient to bind

stably a long polypeptide to the proteasome to secure its proc-

essive digestion. To initially test this hypothesis, we monitored

the proteasomal susceptibility of nonpolymerizable Ub fused to

peptides of increasing length. Our constructs included Ub fused

to peptides comprised of an increasing number of HA repeats

(Figure 2), and to fragments of increasing length derived from

GFP (Figure 3) and DHFR (Figure 4). In addition, we identified

two small naturally occurring proteins, the cell cycle regulator

Cks2, and the DNA damage response protein Hug1, that can

also be targeted following monoubiquitylation (Figures 5 and 6,

respectively). Furthermore, a single Ub conjugated via an iso-

peptide bond to a-synuclein, a protein of 140 residues, was suffi-

cient to promote its proteasomal degradation (Figure 7). All these

studies have shown that conjugation of a single Ub moiety can

target for degradation proteins of up to �150 residues. It should

be noted that Rott and colleagues have recently brought

evidence that a-synuclein is degraded in cells following monou-

biquitylation, though their experiments do not rule out multiple

monoubiquitylations of the molecule (Rott et al., 2011).

In this context it should be noted that recent structural studies

of the 26S proteasome suggest that the distance between the

proteasomal Ub receptors, Rpn10 and Rpn13, and the ATPase

channel is �70-80Å (Lander et al., 2012). We have shown that

a substrate where Ub is fused to an unstructured tail of 20 resi-

dues (�70Å long), is degraded in an Rpn10-dependent mode,

suggesting it acts as a ‘‘classical’’ substrate, the degradation
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Figure 7. Isopeptide Bond-Linked Monoubiquitylated a-Synuclein Is Degraded by the Proteasome
(A) (i) Schematic presentation of monoubiquitylated a-synuclein (a-syn) that was generated by a semi-synthetic chemical approach. Ub was covalently linked to

Lys12 and the adduct was analyzed by HPLC/ESMS. (ii) 1 and 2 mg of purified andmonoubiquitylated a-syn (Ub-a-syn) were analyzed by coomassie blue staining

following SDS-PAGE.

(B) Degradation of a-syn and Ub-a-syn in a cell-free system. 1 mg of each substrate was subjected to ATP-dependent degradation in the presence of purified 26S

proteasome.MG132was added as indicated. Rpt5 is derived from the proteasome. Asterisk denotes free a-synwhichwas probably released by the proteasome-

associated DUB.
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of which is Ub-dependent. It should be noted that Ub itself

may contribute to some extent to the final distance. Also,

the proteasome’s recognition/degradation machinery probably

does not act in a binary - point-to-point - rigid mode, but rather

as a dynamic and elastic apparatus allowing a variety of peptides

and substrates to be efficiently processed following diverse

ubiquitylation patterns.

It is interesting to point that a single Ub moiety can bind to the

Rpn10 subunit of the proteasome in a similar affinity (as deter-

mined by surface plasmon resonance) to that of Ub fused to

model proteins (intact and truncated GFP; Figures S3C and

S3D). However, whereas the quantitative affinity data are in

line with other published data (Zhang et al., 2009), they neverthe-

less do not appear to represent faithfully the cellular events. That

because the association of Ub adducts with the intact protea-

some and its multiple Ub-binding subunits is far more complex

than the binding to a single immobilized proteasomal subunit

used in our assay.

It was proposed that a-globin (142 residues) can be degraded

following monoubiquitylation (Shaeffer, 1994; Shaeffer and

Kania, 1995) which is in line with our hypothesis. However,

PAX3 (479 residues) was also reported to be targeted following

a similar modification (Boutet et al., 2007). Furthermore, recent

studies reported that multiple-monoubiquitylations are required

for the proteasomal processing of the p105 NF-kB precursor

(Kravtsova-Ivantsiv et al., 2009) and for the degradation of

phospholipase D (PLD) (Yin et al., 2010), and cyclin B1 (Dimova

et al., 2012). It will be interesting to find out (though complicated

structural studies are required to solve this problem), whether

multiple monoubiquitylations - where the different Ub moieties

bind to different proteasomal subunits or to different domains

in the known Ub-anchoring subunits - can substitute for a single

polyUb chain (the role of which is also not clear). Thus, it is clear

that while the size of the protein substrate plays an important role
in determining the length of the Ub chain required for targeting it

for degradation, other factors may play a role as well.

One general argument can be that the folding state rather

than the length of a protein may play a role in its ubiquitylation/

degradation mode. In this context, one may claim correctly

that the HA-repeats as well as the truncated GFP and DHFR

are unfolded. Of note that for the HA repeats, the 114 residues

extension is unstable, whereas the 150 residues extension is

stable; for the GFP, the 120 is unstable, whereas the 150 (which

is assumingly still unfolded) is stable; and for the DHFR, the 125

is unstable, the 153 (which does not bind methotrexate) is

partially stable, whereas the full length protein (186 residues),

even without methotrexate (the binding of which results in its

folding) is stable (all obviously in the presence of nonpolymeriz-

able Ub). Importantly, we show that naturally occurring small

substrates that are properly folded (a-synuclein, Hug1 and

Cks2, see Figures 7 and S5) are degraded followingmonoubiqui-

tylation. Thus it appears that the size/length acts as a distance

ruler that plays an important role in the ubiquitylation mode of

the appropriate substrates that leads to their degradation

regardless of their folding state. Nevertheless, it will be a chal-

lenge to distinguish between these two elements (folding versus

length) and to be able to assess the role of each in the proteolytic

process.

It should be noted that with currently available experimental

tools, it is impossible to dissect the nature of Ub chains gener-

ated on proteins larger than 150 residues. However, recent

emerging methodologies that enable chemical synthesis of

well-defined Ub conjugates may allow further light to be shed

on the adaptability of the proteolytic signal. Once we shall

have the capacity to attach to proteins Ub chains of increasing

size, we shall be able to test the contribution of the size of the

target protein to that of the Ub chain necessary to efficiently

target it for degradation.
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EXPERIMENTAL PROCEDURES

Materials, antibodies, cDNA constructs, and standard methods are described

under Supplemental Information.

Synthesis of Ubiquitylated Peptides and Monoubiquitylated

a-Synuclein

The Ub-peptides were synthesized chemically using solid phase methodology

coupledwith native chemical ligation of Ub (NCL)/desulfurization] as described

in Kumar et al. [2011]). Specifically, the synthesis of Ub- a-syn (K12) was

accomplished following a similar strategy for the preparation Ub- a-syn (K6)

(Hejjaoui et al., 2011). The a-syn(1-18)-SR peptide bearing d-mercaptolysine

at Lys12 was prepared using Fmoc-based solid phase peptide synthesis.

Subsequently, this peptide was ligated with an expressed peptide fragment

(19-140) bearing N-terminal Cys. After ligation of the two fragments to

assemble the backbone of the a-syn polypeptide, an isopeptide ligation

step with Ub-thioester - mediated by d-mercaptolysine - was performed fol-

lowed by a final desulfurization step to give the pure Ub-a-syn (K12). The

purified conjugates were analyzed by HPLC/ESMS, and their folding state

determined by circular dichroism (CD). They were dissolved and stored in

50 mM Tris pH 7.6, and their concentration determined using Pierce� BCA

Protein Assay Kit.

Monitoring the Stability of Proteins in a Reconstituted Cell-Free

System

Purified Ub-peptides (1 mg), [35S]-labeled proteins (�20,000 cpm), or purified

proteins (1 mg) were incubated at 37�C for the indicated times in a reaction

mixture (RM) supplemented with ATP and ATP-regenerating system at a final

volume of 12.5 ml as described previously (Shabek et al., 2009). The RM con-

tained complete HeLa cell extract or Fraction II (FrII; Ub-depleted HeLa cell

extract; was prepared as described under Supplemental Information) or puri-

fied 26S proteasome (0.3 mg, Enzo Life Sciences). The ratio of 26S proteasome

to purified proteins was approximately 1:800.When indicated, the proteasome

inhibitor MG132 was added in a concentration of 100 mM. Reactions were

terminated by the addition of 3-fold concentrated sample buffer. Boiled

samples were resolved via SDS-PAGE, and proteins were visualized using

Western blot and chemiluminescence or PhosphorImaging. Band intensities

were quantified using the Total Labs TL100 1D gel analysis software.

Monitoring Stability of Proteins in Cells

30 hr after transfection, cells were treatedwith cycloheximide (CHX; 100 mg/ml)

and/or MG132 (20 mM), or methotrexate (MTX; 40 mM). Following addition of

the inhibitors for the indicated times, cells were harvested in RIPA lysis buffer

(50 mM Tris-HCl, pH 8, 150 mM NaCl, 1% NP-40, 0.1% SDS and protease

inhibitors). Proteins were resolved via SDS-PAGE and detected following

Western blotting as described above. All membranes were re-probed with

anti-tubulin antibody that served as a loading control. Proteins were quantified

as described above.

Conjugation of Proteins in a Reconstituted Cell-Free System

[35S]-labeled proteins were incubated in reaction mixtures in a final volume of

12.5 ml in the presence of 30 mg HeLa cell extract or FrII (as a source of UPS

conjugating enzymes) and other components as described previously (Shabek

et al., 2009). 5 mg ofWTUb, MeUb or K0Ubwere added to the RM as indicated.

The reactions were incubated at 37�C for 1 hr, and proteins were resolved by

SDS-PAGE and visualized using PhosphorImaging.

Ub Conjugates in Cells

HEK293 cells were transiently transfected (as described under Supplemental

Information) with cDNAs coding for the different UbVV fusions or Cks2 variants

along with cDNAs coding for WT or K0 HA/FLAG-tagged Ub. After 24 hr,

MG132 was added for 2 hr and the cells were lysed with RIPA buffer supple-

mented with freshly dissolved iodoacetamide and N-ethylmaleimide (5 mM

each) to inhibit DUBs. Ubiquitylated substrates were immunoprecipitated

with the indicated immobilized antibodies, washed three times with RIPA

buffer, and resolved by SDS-PAGE. Free and conjugated substrates were

visualized using the appropriate antibodies.
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online at http://dx.doi.org/10.1016/j.molcel.2012.07.011.

ACKNOWLEDGMENTS

Research in the laboratory of A.C. is supported by grants from the Dr. Miriam

and Sheldon Adelson Foundation for Medical Research (AMRF), the Israel

Science Foundation (ISF), and the Deutsch-Israelische Projektkooperation

(DIP). A.C. is an Israel Cancer Research Fund (ICRF) USA Professor. The

authors would like to thank Paolo Cascio (University of Turin, Turin, Italy), for

a sample of purified 26S proteasome that was used in certain replicates side

by side with the commercial enzyme.

Received: March 19, 2012

Revised: June 4, 2012

Accepted: July 9, 2012

Published online: August 16, 2012

REFERENCES

Basrai, M.A., Velculescu, V.E., Kinzler, K.W., and Hieter, P. (1999). NORF5/

HUG1 is a component of the MEC1-mediated checkpoint response to DNA

damage and replication arrest in Saccharomyces cerevisiae. Mol. Cell. Biol.

19, 7041–7049.

Ben-Saadon, R., Zaaroor, D., Ziv, T., and Ciechanover, A. (2006). The poly-

comb protein Ring1B generates self atypical mixed ubiquitin chains required

for its in vitro histone H2A ligase activity. Mol. Cell 24, 701–711.

Bennett, M.C., Bishop, J.F., Leng, Y., Chock, P.B., Chase, T.N., and

Mouradian, M.M. (1999). Degradation of alpha-synuclein by proteasome.

J. Biol. Chem. 274, 33855–33858.

Bolin, J.T., Filman, D.J., Matthews, D.A., Hamlin, R.C., and Kraut, J. (1982).

Crystal structures of Escherichia coli and Lactobacillus casei dihydrofolate

reductase refined at 1.7 A resolution. I. General features and binding of meth-

otrexate. J. Biol. Chem. 257, 13650–13662.

Boutet, S.C., Disatnik, M.H., Chan, L.S., Iori, K., and Rando, T.A. (2007).

Regulation of Pax3 by proteasomal degradation of monoubiquitinated protein

in skeletal muscle progenitors. Cell 130, 349–362.
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