723 research outputs found

    The role of electron-hole recombination in organic magnetoresistance

    Full text link
    Magneto-electrical measurements were performed on diodes and bulk heterojunction solar cells (BHSCs) to clarify the role of formation of coulombically bound electron-hole (e-h) pairs on the magnetoresistance (MR) response in organic thin film devices. BHSCs are suitable model systems because they effectively quench excitons but the probability of forming e-h pairs in them can be tuned over orders of magnitude by the choice of material and solvent in the blend. We have systematically varied the e-h recombination coefficients, which are directly proportional to the probability for the charge carriers to meet in space, and found that a reduced probability of electrons and holes meeting in space lead to disappearance of the MR. Our results clearly show that MR is a direct consequence of e-h pair formation. We also found that the MR line shape follows a power law-dependence of B0.5 at higher fields

    Coronal mass ejections and angular momentum loss in young stars

    Get PDF
    Conference Proceeding© International Astronomical Union 2013In our own solar system, the necessity of understanding space weather is readily evident. Fortunately for Earth, our nearest stellar neighbor is relatively quiet, exhibiting activity levels several orders of magnitude lower than young, solar-type stars. In protoplanetary systems, stellar magnetic phenomena observed are analogous to the solar case, but dramatically enhanced on all physical scales: bigger, more energetic, more frequent. While coronal mass ejections (CMEs) could play a significant role in the evolution of protoplanets, they could also affect the evolution of the central star itself. To assess the consequences of prominence eruption/CMEs, we have invoked the solar-stellar connection to estimate, for young, solar-type stars, how frequently stellar CMEs may occur and their attendant mass and angular momentum loss rates. We will demonstrate the necessary conditions under which CMEs could slow stellar rotation. © 2013 International Astronomical Union

    Linking Signatures of Accretion with Magnetic Field Measurements - Line Profiles are not Significantly Different in Magnetic and Non-Magnetic Herbig Ae/Be Stars

    Get PDF
    Herbig Ae/Be stars are young, pre-main-sequence stars that sample the transition in structure and evolution between low- and high-mass stars, providing a key test of accretion processes in higher-mass stars. Few Herbig Ae/Be stars have detected magnetic fields, calling into question whether the magnetospheric accretion paradigm developed for low-mass stars can be scaled to higher masses. We present He I 10830 \AA\ line profiles for 64 Herbig Ae/Be stars with a magnetic field measurement in order to test magnetospheric accretion in the physical regime where its efficacy remains uncertain. Of the 5 stars with a magnetic field detection, 1 shows redshifted absorption, indicative of infall, and 2 show blueshifted absorption, tracing mass outflow. The fraction of redshifted and blueshifted absorption profiles in the non-magnetic Herbig Ae/Be stars is remarkably similar, suggesting that the stellar magnetic field does not affect gas kinematics traced by He I 10830 \AA. Line profile morphology does not correlate with the luminosity, rotation rate, mass accretion rate, or disk inclination. Only the detection of a magnetic field and a nearly face-on disk inclination show a correlation (albeit for few sources). This provides further evidence for weaker dipoles and more complex field topologies as stars develop a radiative envelope. The small number of magnetic Herbig Ae/Be stars has already called into question whether magnetospheric accretion can be scaled to higher masses; accretion signatures are not substantially different in magnetic Herbig Ae/Be stars, casting further doubt that they accrete in the same manner as classical T Tauri stars.Comment: accepted to ApJ; 17 pages, 4 figures, 3 table

    Health-related quality of life in relation to shark symptomatic and radiographic definitions of knee osteoarthritis : data from Osteoarthritis Initiative (OAI) 4-year follow- up study

    Get PDF
    Background: The purpose was to quantify the decrement in health utility (referred as disutility) associated with knee osteoarthritis (OA) and different symptomatic and radiographic uni- and bilateral definitions of knee OA in a repeated measures design of persons with knee OA or at increased risk of developing knee OA. Methods: Data were obtained from the Osteoarthritis Initiative database. SF-12 health-related quality of life was converted into SF-6D utilities, and were then handled as the health utility loss by subtracting 1.000 from the utility score, yielding a negative value (disutility). Symptomatic OA was defined by radiographic findings (Kellgren-Lawrence, K-L, grade >= 2) and frequent knee pain in the same knee. Radiographic OA was defined by five different definitions (K-L >= 2 unilaterally / bilaterally, or the highest / mean / combination of K-L grades of both knees). Repeated measures generalized estimating equation (GEE) models were used to investigate disutility in relation to these different definitions. Results: Utility decreased with worsening of symptomatic or radiographic status of knee OA. The participants with bilateral and unilateral symptomatic knee OA had 0.03 (p <0.001) and 0.02 (p <0.001) points lower utility scores, respectively, compared with the reference group. The radiographic K-L grade 4 defined as the mean or the highest grade of both knees was related to a decrease of 0.04 (p <0.001) and 0.03 (p <0.001) points in utility scores, respectively, compared to the reference group. Conclusions: Knee OA is associated with diminished health-related quality of life. Health utility can be quantified in relation to both symptomatic and radiographic uni- and bilateral definitions of knee OA, and these definitions are associated with differing disutilities. The performance of symptomatic definition was better, indicating that pain experience is an important factor in knee OA related quality of life.Peer reviewe

    A Search for Star-Disk Interaction Among the Strongest X-ray Flaring Stars in the Orion Nebula Cluster

    Full text link
    The Chandra Orion Ultradeep Project observed hundreds of young, low-mass stars undergoing highly energetic X-ray flare events. The 32 most powerful cases have been modeled with the result that the magnetic structures responsible for these flares can be many stellar radii in extent. In this paper, we model the observed spectral energy distributions of these 32 stars in order to determine, in detail for each star, whether there is circumstellar disk material situated in sufficient proximity to the stellar surface for interaction with the large magnetic loops inferred from the observed X-ray flares. Our spectral energy distributions span the wavelength range 0.3-8 um (plus 24 um for some stars), allowing us to constrain the presence of dusty circumstellar material out to >10 AU from the stellar surface in most cases. For 24 of the 32 stars in our sample the available data are sufficient to constrain the location of the inner edge of the dusty disks. Six of these (25%) have spectral energy distributions consistent with inner disks within reach of the observed magnetic loops. Another four stars may have gas disks interior to the dust disk and extending within reach of the magnetic loops, but we cannot confirm this with the available data. The remaining 14 stars (58%) appear to have no significant disk material within reach of the large flaring loops. Thus, up to ~40% of the sample stars exhibit energetic X-ray flares that possibly arise from a magnetic star-disk interaction, and the remainder are evidently associated with extremely large, free-standing magnetic loops anchored only to the stellar surface.Comment: Accepted to the ApJ; 26 pages, 6 tables, 6 figure

    Mass Loss in Pre-main-sequence Stars via Coronal Mass Ejections and Implications for Angular Momentum Loss

    Full text link
    We develop an empirical model to estimate mass-loss rates via coronal mass ejections (CMEs) for solar-type pre-main-sequence (PMS) stars. Our method estimates the CME mass-loss rate from the observed energies of PMS X-ray flares, using our empirically determined relationship between solar X-ray flare energy and CME mass: log ( M CME [g]) = 0.63 × log ( E flare [erg]) – 2.57. Using masses determined for the largest flaring magnetic structures observed on PMS stars, we suggest that this solar-calibrated relationship may hold over 10 orders of magnitude in flare energy and 7 orders of magnitude in CME mass. The total CME mass-loss rate we calculate for typical solar-type PMS stars is in the range 10 –12 -10 –9 M ☉ yr –1 . We then use these CME mass-loss rate estimates to infer the attendant angular momentum loss leading up to the main sequence. Assuming that the CME outflow rate for a typical ~1 M ☉ T Tauri star is <10 –10 M ☉ yr –1 , the resulting spin-down torque is too small during the first ~1 Myr to counteract the stellar spin-up due to contraction and accretion. However, if the CME mass-loss rate is ##IMG## [http://ej.iop.org/icons/Entities/gsim.gif] {gsim 10 –10 M ☉ yr –1 , as permitted by our calculations, then the CME spin-down torque may influence the stellar spin evolution after an age of a few Myr.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/98581/1/0004-637X_760_1_9.pd

    Review of the Properties of the W Boson at LEP, and the Precision Determination of its Mass

    Full text link
    We review the precision measurement of the mass and couplings of the W Boson at LEP. The total and differential W+W- cross section is used to extract the WWZ and WWgamma couplings. We discuss the techniques used by the four LEP experiments to determine the W mass in different decay channels, and present the details of methods used to evaluate the sources of systematic uncertainty.Comment: 97 page
    • …
    corecore