4,119 research outputs found

    A quick approach for rheological evaluation of warm asphalt binders using response surface method

    Get PDF
    This paper describes a quick approach for quantification of the effects of a chemical warm named Rediset, and its interactions with temperature and aging on the rheological properties of asphalt binders using Response Sur-face Method. The central composite method was applied to design experimental programs for three test temperature conditions, namely; very high temperature (120–180 °C), high temperature (46–82 °C), and intermediate temperature (19–31 °C). Rotational viscosity, G*/sin δ and G*sin δ were selected as parameters to assess the effects of the chemical warm additive on the rheological properties of asphalt binders for different aging conditions. Evaluation of the effects of this additive on the transformed value of G*/sin δ at high temperatures indicates that additive content has significant effect on Ln(G*/sin δ). The results for intermediate temperatures show that this additive has a positive effect on G*sin δ of asphalt binders

    Experimental and numerical investigation of footing behaviour on multi-layered rubber-reinforced soil

    Get PDF
    This paper describes the beneficial effects of multiple layers of rubber–sand mixture (RSM). The plate load tests, using circular plate of 300 mm diameter, were performed at an outdoor test pit, dug in natural ground with dimensions of 2000 × 2000 mm in plan and 720 mm in depth to facilitate realistic test conditions. The rubber used in the RSM layers was granulated rubber, produced from waste tires. The optimum thickness of the RSM layer was determined to be approximately 0.4 times the footing diameter. By increasing the number of RSM layers, the bearing capacity of the foundation can be increased and the footing settlement reduced. The influence of the number of RSM layers on bearing capacity and settlement become almost insignificant beyond three layers of RSM, particularly at low settlement ratios. At a ratio of settlement to plate diameter of 4%, the values of bearing pressure for the installation with one, two, three and four layers of RSM were about 1.26, 1.47, 1.52 and 1.54 times greater, respectively, than that for the unreinforced installation. Layers of the RSM reduced the vertical stress transferred through the foundation depth by distributing the load over a wider area. For example, at an applied footing pressure of 560 kPa, the transferred pressure at a depth of 570 mm was about 58, 45 and 35% for one, two and three layers of RSM, respectively, compared to the transferred stress in the unreinforced bed. By numerical analysis, it was found that the presence of soil-rubber layers resulted in expansion of passive zones in the foundation due to the effectiveness of the confinement provided by the rubber inclusions, and this tends to make the bed deflect less. On the basis of this study, the concept of using multiple RSM layers has not only been shown to improve the performance of foundations under heavy loading, but also, the environmental impacts of waste tires are attenuated by re-using their rubber as part of a composite soil material in civil engineering works

    Aluminum slurry coatings to replace cadmium for aeronautic applications

    Get PDF
    Cadmium has been widely used as a coating to provide protection against galvanic corrosion for steels and for its natural lubricity on threaded applications. However, it is a toxic metal and a known carcinogenic agent, which is plated from an aqueous bath containing cyanide salts. For these reasons, the use of cadmium has been banned in Europe for most industrial applications. However, the aerospace industry is still exempt due to the stringent technical and safety requirements associated with aeronautical applications, as an acceptable replacement is yet to be found. Al slurry coatings have been developed as an alternative to replace cadmium coatings. The coatings were deposited on AISI 4340 steel and have been characterized by optical and electron microscopy. Testing included salt fog corrosion exposure, fluid corrosion exposure (immersion), humidity resistance, coating-substrate and paint-coating adhesion, electric conductivity, galvanic corrosion, embrittlement and fatigue. The results indicated that Al slurry coatings are an excellent alternative for Cd replacement

    Physical pretreatment of biogenic-rich trommel fines for fast pyrolysis

    Get PDF
    Energy from Waste (EfW) technologies such as fluidized bed fast pyrolysis, are beneficial for both energy generation and waste management. Such technologies, however face significant challenges due to the heterogeneous nature, particularly the high ash contents of some municipal solid waste types e.g. trommel fines. A study of the physical/mechanical and thermal characteristics of these complex wastes is important for two main reasons; (a) to inform the design and operation of pyrolysis systems to handle the characteristics of such waste; (b) to control/modify the characteristics of the waste to fit with existing EFW technologies via appropriate feedstock preparation methods. In this study, the preparation and detailed characterisation of a sample of biogenic-rich trommel fines has been carried out with a view to making the feedstock suitable for fast pyrolysis based on an existing fluidized bed reactor. Results indicate that control of feed particle size was very important to prevent problems of dust entrainment in the fluidizing gas as well as to prevent feeder hardware problems caused by large stones and aggregates. After physical separation and size reduction, nearly 70. wt% of the trommel fines was obtained within the size range suitable for energy recovery using the existing fast pyrolysis system. This pyrolyzable fraction could account for about 83% of the energy content of the 'as received' trommel fines sample. Therefore there was no significant differences in the thermochemical properties of the raw and pre-treated feedstocks, indicating that suitably prepared trommel fines samples can be used for energy recovery, with significant reduction in mass and volume of the original waste. Consequently, this can lead to more than 90% reduction in the present costs of disposal of trommel fines in landfills. In addition, the recovered plastics and textile materials could be used as refuse derived fuel

    Experimental study and numerical reproduction of self-weight consolidation behavior of thickened tailings

    Get PDF
    Abstract: Thickened tailings, defined as mineral wastes that behave as a non-Newtonian fluid, show a small yield stress and release a small amount of water following deposition. Thickening has become an increasingly used option in tailings management. This paper presents a detailed examination of gold mine thickened tailings undergoing self-weight consolidation, which is an important mechanism affecting soft soils immediately after deposition. Self-weight consolidation was evaluated using a column equipped with water pressure transmitters whereas a slurry consolidometer was employed to obtain the compressibility relationship under low vertical effective stresses. The piecewise-linear model CS2 was used to model the experimental self-weight consolidation test. This model proved very accurate in reproducing the observed behavior. Both the test results and the model results also confirmed the absence of sedimentation in the thickened tailings, which is in agreement with values reported in the literature related to similar materials

    Effect of shoot parameters on cracking in vegetated soil

    Get PDF
    The relationship of shoot parameters, which play a major role in transpiration, with the cracking of soil has rarely been investigated. Such relation helps to analyse water use efficiency accurately. This study investigated the effect of vegetation (cowpea) age on crack formation and explored any correlation between age and cracking. The age of vegetation was expressed in the form of shoot parameters (shoot length (SL) and leaf area index (LAI)). Crack formation was expressed in the form of crack intensity factor (CIF). Ten experimental test pots were used to observe crack formation on vegetated and bare soil in a greenhouse. Image analysis in the experimental pots revealed that under drying–wetting cycles, the CIF of vegetated soil increased compared with that of bare soil. There was an evident increase in CIF with SL growth, up to a threshold length (400 mm), where lateral branch growth starts forming. There was no observable increase in CIF, with further SL growth (with negligible lateral branch formation). CIF increased with LAI up to a certain threshold value (0·56), after which the CIF was relatively the same. Two correlations have been identified for shoot parameters (SL, LAI) with the CIF for the selected species

    High pressure gas flow, storage, and displacement in fractured rock-Experimental setup development and application.

    Get PDF
    This paper presents the design, development, and application of a laboratory setup for the experimental investigations of gas flow and reactions in a fractured rock. The laboratory facility comprises (i) a high pressure manometric sorption apparatus, where equilibrium and kinetic phenomena of adsorption and desorption can be examined, (ii) a high pressure triaxial core flooding system where the chemical reactive transport properties or processes can be explored, and (iii) an ancillary system including pure and mixed gas supply and analysis units. Underground conditions, in terms of pore pressure, confining pressure, and temperature, can be replicated using the triaxial core flooding system developed for depths up to 2 km. Core flooding experiments can be conducted under a range of gas injection pressures up to 20 MPa and temperatures up to 338 K. Details of the design considerations and the specification for the critical measuring instruments are described. The newly developed laboratory facility has been applied to study the adsorption of N2, CH4, and CO2 relevant to applications in carbon sequestration in coal and enhanced coalbed methane recovery. Under a wide range of pressures, the flow of helium in a core sample was studied and the evolution of absolute permeability at different effective stress conditions has been investigated. A comprehensive set of high resolution data has been produced on anthracite coal samples from the South Wales coalfield, using the developed apparatus. The results of the applications provide improved insight into the high pressure flow and reaction of various gas species in the coal samples from the South Wales coalfield

    Mechanical, dynamic, and thermomechanical properties of coir/pineapple leaf fiber reinforced polylactic acid hybrid biocomposites

    Get PDF
    Natural fiber‐based polymer composites have been widely studied to substitute synthetic materials. In this research, pineapple leaf fibers (PALF) and coir fibers (CF) were loaded into a polylactic acid (PLA) matrix to develop composite materials with improved mechanical and thermal properties, which could be potentially applied as biodegradable food packaging. Biocomposites with different fiber ratios were manufactured using an internal mixer plasticizer and a hot press machine. Mechanical and thermal analyses of the obtained composites were carried out and the results were compared with those of pure PLA. Scanning electron microscopy (SEM) was used to observe the microstructural failure of the composites. Mechanical tests indicated that all the composites had higher tensile and flexural modulus, compared to those of neat PLA. Also, strength values were increased upon addition of PALF, while impact tests showed enhanced strength results upon addition of CF. SEM findings confirmed the outcomes of the mechanical tests. DMA results confirmed that the storage and loss moduli of the CF/PALF/PLA hybrid composites increased with respect to those of the neat PLA, whereas the tan δ decreased. The coefficient of thermal expansion (CTE) of the PLA composites decreased with the addition of fiber reinforcements. Based on the results achieved in this investigation, the hybrid composite containing CF and PALF in a 1:1 ratio (C1P1) presented the optimum set of mechanical properties and improved thermal stability, which make it suitable for applications such as food packaging and structure components to help reduce the environmental loads
    corecore