214 research outputs found

    Application of two machine learning algorithms to genetic association studies in the presence of covariates

    Get PDF
    BACKGROUND: Population-based investigations aimed at uncovering genotype-trait associations often involve high-dimensional genetic polymorphism data as well as information on multiple environmental and clinical parameters. Machine learning (ML) algorithms offer a straightforward analytic approach for selecting subsets of these inputs that are most predictive of a pre-defined trait. The performance of these algorithms, however, in the presence of covariates is not well characterized. METHODS AND RESULTS: In this manuscript, we investigate two approaches: Random Forests (RFs) and Multivariate Adaptive Regression Splines (MARS). Through multiple simulation studies, the performance under several underlying models is evaluated. An application to a cohort of HIV-1 infected individuals receiving anti-retroviral therapies is also provided. CONCLUSION: Consistent with more traditional regression modeling theory, our findings highlight the importance of considering the nature of underlying gene-covariate-trait relationships before applying ML algorithms, particularly when there is potential confounding or effect mediation

    Genetic signal maximization using environmental regression

    Get PDF
    Joint analyses of correlated phenotypes in genetic epidemiology studies are common. However, these analyses primarily focus on genetic correlation between traits and do not take into account environmental correlation. We describe a method that optimizes the genetic signal by accounting for stochastic environmental noise through joint analysis of a discrete trait and a correlated quantitative marker. We conducted bivariate analyses where heritability and the environmental correlation between the discrete and quantitative traits were calculated using Genetic Analysis Workshop 17 (GAW17) family data. The resulting inverse value of the environmental correlation between these traits was then used to determine a new β coefficient for each quantitative trait and was constrained in a univariate model. We conducted genetic association tests on 7,087 nonsynonymous SNPs in three GAW17 family replicates for Affected status with the β coefficient fixed for three quantitative phenotypes and compared these to an association model where the β coefficient was allowed to vary. Bivariate environmental correlations were 0.64 (± 0.09) for Q1, 0.798 (± 0.076) for Q2, and −0.169 (± 0.18) for Q4. Heritability of Affected status improved in each univariate model where a constrained β coefficient was used to account for stochastic environmental effects. No genome-wide significant associations were identified for either method but we demonstrated that constraining β for covariates slightly improved the genetic signal for Affected status. This environmental regression approach allows for increased heritability when the β coefficient for a highly correlated quantitative covariate is constrained and increases the genetic signal for the discrete trait

    Evolution of spiral and scroll waves of excitation in a mathematical model of ischaemic border zone

    Get PDF
    Abnormal electrical activity from the boundaries of ischemic cardiac tissue is recognized as one of the major causes in generation of ischemia-reperfusion arrhythmias. Here we present theoretical analysis of the waves of electrical activity that can rise on the boundary of cardiac cell network upon its recovery from ischaemia-like conditions. The main factors included in our analysis are macroscopic gradients of the cell-to-cell coupling and cell excitability and microscopic heterogeneity of individual cells. The interplay between these factors allows one to explain how spirals form, drift together with the moving boundary, get transiently pinned to local inhomogeneities, and finally penetrate into the bulk of the well-coupled tissue where they reach macroscopic scale. The asymptotic theory of the drift of spiral and scroll waves based on response functions provides explanation of the drifts involved in this mechanism, with the exception of effects due to the discreteness of cardiac tissue. In particular, this asymptotic theory allows an extrapolation of 2D events into 3D, which has shown that cells within the border zone can give rise to 3D analogues of spirals, the scroll waves. When and if such scroll waves escape into a better coupled tissue, they are likely to collapse due to the positive filament tension. However, our simulations have shown that such collapse of newly generated scrolls is not inevitable and that under certain conditions filament tension becomes negative, leading to scroll filaments to expand and multiply leading to a fibrillation-like state within small areas of cardiac tissue.Comment: 26 pages, 13 figures, appendix and 2 movies, as accepted to PLoS ONE 2011/08/0

    Performance of the CMS Cathode Strip Chambers with Cosmic Rays

    Get PDF
    The Cathode Strip Chambers (CSCs) constitute the primary muon tracking device in the CMS endcaps. Their performance has been evaluated using data taken during a cosmic ray run in fall 2008. Measured noise levels are low, with the number of noisy channels well below 1%. Coordinate resolution was measured for all types of chambers, and fall in the range 47 microns to 243 microns. The efficiencies for local charged track triggers, for hit and for segments reconstruction were measured, and are above 99%. The timing resolution per layer is approximately 5 ns

    Homogeneous Datasets of Triple Negative Breast Cancers Enable the Identification of Novel Prognostic and Predictive Signatures

    Get PDF
    Background: Current prognostic gene signatures for breast cancer mainly reflect proliferation status and have limited value in triple-negative (TNBC) cancers. The identification of prognostic signatures from TNBC cohorts was limited in the past due to small sample sizes. Methodology/Principal Findings: We assembled all currently publically available TNBC gene expression datasets generated on Affymetrix gene chips. Inter-laboratory variation was minimized by filtering methods for both samples and genes. Supervised analysis was performed to identify prognostic signatures from 394 cases which were subsequently tested on an independent validation cohort (n = 261 cases). Conclusions/Significance: Using two distinct false discovery rate thresholds, 25% and <3.5%, a larger (n = 264 probesets) and a smaller (n = 26 probesets) prognostic gene sets were identified and used as prognostic predictors. Most of these genes were positively associated with poor prognosis and correlated to metagenes for inflammation and angiogenesis. No correlation to other previously published prognostic signatures (recurrence score, genomic grade index, 70-gene signature, wound response signature, 7-gene immune response module, stroma derived prognostic predictor, and a medullary like signature) was observed. In multivariate analyses in the validation cohort the two signatures showed hazard ratios of 4.03 (95% confidence interval [CI] 1.71–9.48; P = 0.001) and 4.08 (95% CI 1.79–9.28; P = 0.001), respectively. The 10-year event-free survival was 70% for the good risk and 20% for the high risk group. The 26-gene signatures had modest predictive value (AUC = 0.588) to predict response to neoadjuvant chemotherapy, however, the combination of a B-cell metagene with the prognostic signatures increased its response predictive value. We identified a 264-gene prognostic signature for TNBC which is unrelated to previously known prognostic signatures

    Genome-wide linkage analysis of 1,233 prostate cancer pedigrees from the International Consortium for prostate cancer Genetics using novel sumLINK and sumLOD analyses

    Full text link
    BACKGROUND Prostate cancer (PC) is generally believed to have a strong inherited component, but the search for susceptibility genes has been hindered by the effects of genetic heterogeneity. The recently developed sumLINK and sumLOD statistics are powerful tools for linkage analysis in the presence of heterogeneity. METHODS We performed a secondary analysis of 1,233 PC pedigrees from the International Consortium for Prostate Cancer Genetics (ICPCG) using two novel statistics, the sumLINK and sumLOD. For both statistics, dominant and recessive genetic models were considered. False discovery rate (FDR) analysis was conducted to assess the effects of multiple testing. RESULTS Our analysis identified significant linkage evidence at chromosome 22q12, confirming previous findings by the initial conventional analyses of the same ICPCG data. Twelve other regions were identified with genome-wide suggestive evidence for linkage. Seven regions (1q23, 5q11, 5q35, 6p21, 8q12, 11q13, 20p11–q11) are near loci previously identified in the initial ICPCG pooled data analysis or the subset of aggressive PC pedigrees. Three other regions (1p12, 8p23, 19q13) confirm loci reported by others, and two (2p24, 6q27) are novel susceptibility loci. FDR testing indicates that over 70% of these results are likely true positive findings. Statistical recombinant mapping narrowed regions to an average of 9 cM. CONCLUSIONS Our results represent genomic regions with the greatest consistency of positive linkage evidence across a very large collection of high-risk PC pedigrees using new statistical tests that deal powerfully with heterogeneity. These regions are excellent candidates for further study to identify PC predisposition genes. Prostate 70: 735–744, 2010. © 2010 Wiley-Liss, Inc.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/71371/1/21106_ftp.pd

    Clique-Finding for Heterogeneity and Multidimensionality in Biomarker Epidemiology Research: The CHAMBER Algorithm

    Get PDF
    Commonly-occurring disease etiology may involve complex combinations of genes and exposures resulting in etiologic heterogeneity. We present a computational algorithm that employs clique-finding for heterogeneity and multidimensionality in biomedical and epidemiological research (the "CHAMBER" algorithm).This algorithm uses graph-building to (1) identify genetic variants that influence disease risk and (2) predict individuals at risk for disease based on inherited genotype. We use a set-covering algorithm to identify optimal cliques and a Boolean function that identifies etiologically heterogeneous groups of individuals. We evaluated this approach using simulated case-control genotype-disease associations involving two- and four-gene patterns. The CHAMBER algorithm correctly identified these simulated etiologies. We also used two population-based case-control studies of breast and endometrial cancer in African American and Caucasian women considering data on genotypes involved in steroid hormone metabolism. We identified novel patterns in both cancer sites that involved genes that sulfate or glucuronidate estrogens or catecholestrogens. These associations were consistent with the hypothesized biological functions of these genes. We also identified cliques representing the joint effect of multiple candidate genes in all groups, suggesting the existence of biologically plausible combinations of hormone metabolism genes in both breast and endometrial cancer in both races.The CHAMBER algorithm may have utility in exploring the multifactorial etiology and etiologic heterogeneity in complex disease

    Pretense and Imagination

    Get PDF
    Issues of pretense and imagination are of central interest to philosophers, psychologists, and researchers in allied fields. In this entry, we provide a roadmap of some of the central themes around which discussion has been focused. We begin with an overview of pretense, imagination, and the relationship between them. We then shift our attention to the four specific topics where the disciplines' research programs have intersected or where additional interactions could prove mutually beneficial: the psychological underpinnings of performing pretense and of recognizing pretense, the cognitive capacities involved in imaginative engagement with fictions, and the real-world impact of make-believe. In the final section, we discuss more briefly a number of other mental activities that arguably involve imagining, including counterfactual reasoning, delusions, and dreaming
    corecore