207 research outputs found
Note: A simple sample transfer alignment for ultra-high vacuum systems
The alignment of ultra-high-vacuum sample transfer systems can be problematic when there is no direct line of sight to assist the user. We present the design of a simple and cheap system which greatly simplifies the alignment of sample transfer devices. Our method is based on the adaptation of a commercial digital camera which provides live views from within the vacuum chamber. The images of the camera are further processed using an image recognition and processing code which determines any misalignments and reports them to the user. Installation has proven to be extremely useful in order to align the sample with respect to the transfer mechanism. Furthermore, the alignment software can be easily adapted for other systems.One of us (A.T.) acknowledges financial support provided by the FWF (Austrian Science Fund) within Project No. J3479-N20
The clinical and therapeutic uses of MDM2 and PSMA and their potential interaction in aggressive cancers
Prostate-specific membrane antigen (PSMA) overexpression is observed in the neovasculature of solid tumors, but not in the vasculature of normal tissues. Increased PSMA expression is positively associated with tumor stage and grade, although its function in cancer remains unclear. Mouse double minute 2 (MDM2) is a negative regulator of the p53 tumor suppressor and is reported to regulate VEGF expression and angiogenesis. Both proteins have been considered as biomarkers and therapeutic targets for advanced solid tumors. Our work and a recent microarray-based gene profiling study suggest there could be signaling interplay between MDM2 and PSMA. We herein review the mechanisms underlining the outgrowth of tumors associated with PSMA and MDM2, their potential interaction and how this may be applied to anticancer therapeutics
Stochastically Gating Ion Channels Enable Patterned Spike Firing through Activity-Dependent Modulation of Spike Probability
The transformation of synaptic input into patterns of spike output is a
fundamental operation that is determined by the particular complement of ion
channels that a neuron expresses. Although it is well established that
individual ion channel proteins make stochastic transitions between conducting
and non-conducting states, most models of synaptic integration are
deterministic, and relatively little is known about the functional consequences
of interactions between stochastically gating ion channels. Here, we show that a
model of stellate neurons from layer II of the medial entorhinal cortex
implemented with either stochastic or deterministically gating ion channels can
reproduce the resting membrane properties of stellate neurons, but only the
stochastic version of the model can fully account for perithreshold membrane
potential fluctuations and clustered patterns of spike output that are recorded
from stellate neurons during depolarized states. We demonstrate that the
stochastic model implements an example of a general mechanism for patterning of
neuronal output through activity-dependent changes in the probability of spike
firing. Unlike deterministic mechanisms that generate spike patterns through
slow changes in the state of model parameters, this general stochastic mechanism
does not require retention of information beyond the duration of a single spike
and its associated afterhyperpolarization. Instead, clustered patterns of spikes
emerge in the stochastic model of stellate neurons as a result of a transient
increase in firing probability driven by activation of HCN channels during
recovery from the spike afterhyperpolarization. Using this model, we infer
conditions in which stochastic ion channel gating may influence firing patterns
in vivo and predict consequences of modifications of HCN
channel function for in vivo firing patterns
Regulation of human intestinal T-cell responses by type 1 interferon-STAT1 signaling is disrupted in inflammatory bowel disease
This work was supported by a research fellowship grant from the Crohn’s and Colitis in
Childhood Research Association (CICRA) and a small project grant from Crohn’s and Colitis
UK (CCUK). We would like to acknowledge Professor Ian Sanderson, who helped with the
initial design of this work, and provided important support throughout. We would also like to
thank Dr Gary Warne for his advice and assistance in the use of the sorting by flow
cytometry. We would also like to thank Dr Raj Lahiri and Professor Graham Foster for the
kind gift of the primers for the ISGs (2’5’ OAS and MxA)
Compressed representation of a partially defined integer function over multiple arguments
In OLAP (OnLine Analitical Processing) data are analysed in an n-dimensional cube. The cube may be represented as a partially defined function over n arguments. Considering that often the function is not defined everywhere, we ask: is there a known way of representing the function or the points in which it is defined, in a more compact manner than the trivial one
NeuroML: A Language for Describing Data Driven Models of Neurons and Networks with a High Degree of Biological Detail
Biologically detailed single neuron and network models are important for understanding how ion channels, synapses and anatomical connectivity underlie the complex electrical behavior of the brain. While neuronal simulators such as NEURON, GENESIS, MOOSE, NEST, and PSICS facilitate the development of these data-driven neuronal models, the specialized languages they employ are generally not interoperable, limiting model accessibility and preventing reuse of model components and cross-simulator validation. To overcome these problems we have used an Open Source software approach to develop NeuroML, a neuronal model description language based on XML (Extensible Markup Language). This enables these detailed models and their components to be defined in a standalone form, allowing them to be used across multiple simulators and archived in a standardized format. Here we describe the structure of NeuroML and demonstrate its scope by converting into NeuroML models of a number of different voltage- and ligand-gated conductances, models of electrical coupling, synaptic transmission and short-term plasticity, together with morphologically detailed models of individual neurons. We have also used these NeuroML-based components to develop an highly detailed cortical network model. NeuroML-based model descriptions were validated by demonstrating similar model behavior across five independently developed simulators. Although our results confirm that simulations run on different simulators converge, they reveal limits to model interoperability, by showing that for some models convergence only occurs at high levels of spatial and temporal discretisation, when the computational overhead is high. Our development of NeuroML as a common description language for biophysically detailed neuronal and network models enables interoperability across multiple simulation environments, thereby improving model transparency, accessibility and reuse in computational neuroscience
Axons Amplify Somatic Incomplete Spikes into Uniform Amplitudes in Mouse Cortical Pyramidal Neurons
BACKGROUND: Action potentials are the essential unit of neuronal encoding. Somatic sequential spikes in the central nervous system appear various in amplitudes. To be effective neuronal codes, these spikes should be propagated to axonal terminals where they activate the synapses and drive postsynaptic neurons. It remains unclear whether these effective neuronal codes are based on spike timing orders and/or amplitudes. METHODOLOGY/PRINCIPAL FINDINGS: We investigated this fundamental issue by simultaneously recording the axon versus soma of identical neurons and presynaptic vs. postsynaptic neurons in the cortical slices. The axons enable somatic spikes in low amplitude be enlarged, which activate synaptic transmission in consistent patterns. This facilitation in the propagation of sequential spikes through the axons is mechanistically founded by the short refractory periods, large currents and high opening probability of axonal voltage-gated sodium channels. CONCLUSION/SIGNIFICANCE: An amplification of somatic incomplete spikes into axonal complete ones makes sequential spikes to activate consistent synaptic transmission. Therefore, neuronal encoding is likely based on spike timing order, instead of graded analogues
In vivo assembly of the axon initial segment in motor neurons
International audienceThe axon initial segment (AIS) is responsible for both the modulation of action potentials and the maintenance of neuronal polarity. Yet, the molecular mechanisms controlling its assembly are incompletely understood. Our study in single electroporated motor neurons in mouse embryos revealed that AnkyrinG (AnkG), the AIS master organizer, is undetectable in bipolar migrating motor neurons, but is already expressed at the beginning of axonogenesis at E9.5 and initially distributed homogeneously along the entire growing axon. Then, from E11.5, a stage when AnkG is already apposed to the membrane, as observed by electron microscopy, the protein progressively becomes restricted to the proximal axon. Analysis on the global motor neurons population indicated that Neurofascin follows an identical spatio-temporal distribution, whereas sodium channels and beta 4-spectrin only appear along AnkG(+) segments at E11.5. Early patch-clamp recordings of individual motor neurons indicated that at E12.5 these nascent AISs are already able to generate spikes. Using knock-out mice, we demonstrated that neither beta 4-spectrin nor Neurofascin control the distal-to-proximal restriction of AnkG
Comparative Transcriptome Analysis of Bacillus subtilis Responding to Dissolved Oxygen in Adenosine Fermentation
Dissolved oxygen (DO) is an important factor for adenosine fermentation. Our previous experiments have shown that low oxygen supply in the growth period was optimal for high adenosine yield. Herein, to better understand the link between oxygen supply and adenosine productivity in B. subtilis (ATCC21616), we sought to systematically explore the effect of DO on genetic regulation and metabolism through transcriptome analysis. The microarrays representing 4,106 genes were used to study temporal transcript profiles of B. subtilis fermentation in response to high oxygen supply (agitation 700 r/min) and low oxygen supply (agitation 450 r/min). The transcriptome data analysis revealed that low oxygen supply has three major effects on metabolism: enhance carbon metabolism (glucose metabolism, pyruvate metabolism and carbon overflow), inhibit degradation of nitrogen sources (glutamate family amino acids and xanthine) and purine synthesis. Inhibition of xanthine degradation was the reason that low oxygen supply enhanced adenosine production. These provide us with potential targets, which can be modified to achieve higher adenosine yield. Expression of genes involved in energy, cell type differentiation, protein synthesis was also influenced by oxygen supply. These results provided new insights into the relationship between oxygen supply and metabolism
Active rehabilitation for chronic low back pain: Cognitive-behavioral, physical, or both? First direct post-treatment results from a randomized controlled trial [ISRCTN22714229]
BACKGROUND: The treatment of non-specific chronic low back pain is often based on three different models regarding the development and maintenance of pain and especially functional limitations: the deconditioning model, the cognitive behavioral model and the biopsychosocial model. There is evidence that rehabilitation of patients with chronic low back pain is more effective than no treatment, but information is lacking about the differential effectiveness of different kinds of rehabilitation. A direct comparison of a physical, a cognitive-behavioral treatment and a combination of both has never been carried out so far. METHODS: The effectiveness of active physical, cognitive-behavioral and combined treatment for chronic non-specific low back pain compared with a waiting list control group was determined by performing a randomized controlled trial in three rehabilitation centers. Two hundred and twenty three patients were randomized, using concealed block randomization to one of the following treatments, which they attended three times a week for 10 weeks: Active Physical Treatment (APT), Cognitive-Behavioral Treatment (CBT), Combined Treatment of APT and CBT (CT), or Waiting List (WL). The outcome variables were self-reported functional limitations, patient's main complaints, pain, mood, self-rated treatment effectiveness, treatment satisfaction and physical performance including walking, standing up, reaching forward, stair climbing and lifting. Assessments were carried out by blinded research assistants at baseline and immediately post-treatment. The data were analyzed using the intention-to-treat principle. RESULTS: For 212 patients, data were available for analysis. After treatment, significant reductions were observed in functional limitations, patient's main complaints and pain intensity for all three active treatments compared to the WL. Also, the self-rated treatment effectiveness and satisfaction appeared to be higher in the three active treatments. Several physical performance tasks improved in APT and CT but not in CBT. No clinically relevant differences were found between the CT and APT, or between CT and CBT. CONCLUSION: All three active treatments were effective in comparison to no treatment, but no clinically relevant differences between the combined and the single component treatments were found
- …