79 research outputs found

    Identifying Molecular Effects of Diet through Systems Biology: Influence of Herring Diet on Sterol Metabolism and Protein Turnover in Mice

    Get PDF
    BACKGROUND: Changes in lifestyle have resulted in an epidemic development of obesity-related diseases that challenge the healthcare systems worldwide. To develop strategies to tackle this problem the focus is on diet to prevent the development of obesity-associated diseases such as cardiovascular disease (CVD). This will require methods for linking nutrient intake with specific metabolic processes in different tissues. METHODOLOGY/PRINCIPAL FINDING: Low-density lipoprotein receptor-deficient (Ldlr -/-) mice were fed a high fat/high sugar diet to mimic a westernized diet, being a major reason for development of obesity and atherosclerosis. The diets were supplemented with either beef or herring, and matched in macronutrient contents. Body composition, plasma lipids and aortic lesion areas were measured. Transcriptomes of metabolically important tissues, e.g. liver, muscle and adipose tissue were analyzed by an integrated approach with metabolic networks to directly map the metabolic effects of diet in these different tissues. Our analysis revealed a reduction in sterol metabolism and protein turnover at the transcriptional level in herring-fed mice. CONCLUSION: This study shows that an integrated analysis of transcriptome data using metabolic networks resulted in the identification of signature pathways. This could not have been achieved using standard clustering methods. In particular, this systems biology analysis could enrich the information content of biomedical or nutritional data where subtle changes in several tissues together affects body metabolism or disease progression. This could be applied to improve diets for subjects exposed to health risks associated with obesity

    Circulating insulin-like growth factor axis and the risk of pancreatic cancer in four prospective cohorts

    Get PDF
    Insulin-like growth factor (IGF)-I induces growth in pancreatic cancer cells and blockade of the IGF-I receptor has antitumour activity. The association of plasma IGF-I and IGF binding protein-3 (IGFBP-3) with pancreatic cancer risk has been investigated in two small studies, with conflicting results. We conducted a nested case–control study within four large, prospective cohorts to investigate whether prediagnostic plasma levels of IGF-I, IGF-II, and IGFBP-3 were associated with pancreatic cancer risk. Plasma levels in 212 cases and 635 matched controls were compared by conditional logistic regression, with adjustment for other known pancreatic cancer risk factors. No association was observed between plasma levels of IGF-I, IGF-II, or IGFBP-3 and incident diagnosis of pancreatic cancer. Relative risks for the highest vs the lowest quartile of IGF-I, IGF-II, and IGFBP-3 were 0.94 (95% confidence interval (CI), 0.60–1.48), 0.96 (95% CI, 0.61–1.52), and 1.21 (95% CI, 0.75–1.92), respectively. The relative risk for the molar ratio of IGF-I and IGFBP-3, a surrogate measure for free IGF-I, was 0.84 (95% CI, 0.54–1.31). Additionally, no association was noted in stratified analyses or when requiring longer follow-up. In four prospective cohorts, we found no association between the risk of pancreatic cancer and prediagnostic plasma levels of IGF-I, IGF-II, or IGFBP-3

    Worldwide comparison of survival from childhood leukaemia for 1995–2009, by subtype, age, and sex (CONCORD-2): a population-based study of individual data for 89 828 children from 198 registries in 53 countries

    Get PDF
    Background Global inequalities in access to health care are reflected in differences in cancer survival. The CONCORD programme was designed to assess worldwide differences and trends in population-based cancer survival. In this population-based study, we aimed to estimate survival inequalities globally for several subtypes of childhood leukaemia. Methods Cancer registries participating in CONCORD were asked to submit tumour registrations for all children aged 0-14 years who were diagnosed with leukaemia between Jan 1, 1995, and Dec 31, 2009, and followed up until Dec 31, 2009. Haematological malignancies were defined by morphology codes in the International Classification of Diseases for Oncology, third revision. We excluded data from registries from which the data were judged to be less reliable, or included only lymphomas, and data from countries in which data for fewer than ten children were available for analysis. We also excluded records because of a missing date of birth, diagnosis, or last known vital status. We estimated 5-year net survival (ie, the probability of surviving at least 5 years after diagnosis, after controlling for deaths from other causes [background mortality]) for children by calendar period of diagnosis (1995-99, 2000-04, and 2005-09), sex, and age at diagnosis (< 1, 1-4, 5-9, and 10-14 years, inclusive) using appropriate life tables. We estimated age-standardised net survival for international comparison of survival trends for precursor-cell acute lymphoblastic leukaemia (ALL) and acute myeloid leukaemia (AML). Findings We analysed data from 89 828 children from 198 registries in 53 countries. During 1995-99, 5-year agestandardised net survival for all lymphoid leukaemias combined ranged from 10.6% (95% CI 3.1-18.2) in the Chinese registries to 86.8% (81.6-92.0) in Austria. International differences in 5-year survival for childhood leukaemia were still large as recently as 2005-09, when age-standardised survival for lymphoid leukaemias ranged from 52.4% (95% CI 42.8-61.9) in Cali, Colombia, to 91.6% (89.5-93.6) in the German registries, and for AML ranged from 33.3% (18.9-47.7) in Bulgaria to 78.2% (72.0-84.3) in German registries. Survival from precursor-cell ALL was very close to that of all lymphoid leukaemias combined, with similar variation. In most countries, survival from AML improved more than survival from ALL between 2000-04 and 2005-09. Survival for each type of leukaemia varied markedly with age: survival was highest for children aged 1-4 and 5-9 years, and lowest for infants (younger than 1 year). There was no systematic difference in survival between boys and girls. Interpretation Global inequalities in survival from childhood leukaemia have narrowed with time but remain very wide for both ALL and AML. These results provide useful information for health policy makers on the effectiveness of health-care systems and for cancer policy makers to reduce inequalities in childhood survival

    All-sky search for gravitational-wave bursts in the second joint LIGO-Virgo run

    Get PDF
    We present results from a search for gravitational-wave bursts in the data collected by the LIGO and Virgo detectors between July 7, 2009 and October 20, 2010: data are analyzed when at least two of the three LIGO-Virgo detectors are in coincident operation, with a total observation time of 207 days. The analysis searches for transients of duration < 1 s over the frequency band 64-5000 Hz, without other assumptions on the signal waveform, polarization, direction or occurrence time. All identified events are consistent with the expected accidental background. We set frequentist upper limits on the rate of gravitational-wave bursts by combining this search with the previous LIGO-Virgo search on the data collected between November 2005 and October 2007. The upper limit on the rate of strong gravitational-wave bursts at the Earth is 1.3 events per year at 90% confidence. We also present upper limits on source rate density per year and Mpc^3 for sample populations of standard-candle sources. As in the previous joint run, typical sensitivities of the search in terms of the root-sum-squared strain amplitude for these waveforms lie in the range 5 10^-22 Hz^-1/2 to 1 10^-20 Hz^-1/2. The combination of the two joint runs entails the most sensitive all-sky search for generic gravitational-wave bursts and synthesizes the results achieved by the initial generation of interferometric detectors.Comment: 15 pages, 7 figures: data for plots and archived public version at https://dcc.ligo.org/cgi-bin/DocDB/ShowDocument?docid=70814&version=19, see also the public announcement at http://www.ligo.org/science/Publication-S6BurstAllSky

    In vitro models of cancer stem cells and clinical applications

    Full text link

    Rarity and incomplete sampling in DNA-based species delimitation

    No full text
    DNA-based species delimitation may be compromised by limited sampling effort and species rarity, including “singleton” representatives of species, which hampers estimates of intra- versus interspecies evolutionary processes. In a case study of southern African chafers (beetles in the family Scarabaeidae), many species and subclades were poorly represented and 48.5% of species were singletons. Using cox1 sequences from >500 specimens and ∼100 species, the Generalized Mixed Yule Coalescent (GMYC) analysis as well as various other approaches for DNA-based species delimitation (Automatic Barcode Gap Discovery (ABGD), Poisson tree processes (PTP), Species Identifier, Statistical Parsimony), frequently produced poor results if analyzing a narrow target group only, but the performance improved when several subclades were combined. Hence, low sampling may be compensated for by “clade addition” of lineages outside of the focal group. Similar findings were obtained in reanalysis of published data sets of taxonomically poorly known species assemblages of insects from Madagascar. The low performance of undersampled trees is not due to high proportions of singletons per se, as shown in simulations (with 13%, 40% and 52% singletons). However, the GMYC method was highly sensitive to variable effective population size (NeNe), which was exacerbated by variable species abundances in the simulations. Hence, low sampling success and rarity of species affect the power of the GMYC method only if they reflect great differences in NeNe among species. Potential negative effects of skewed species abundances and prevalence of singletons are ultimately an issue about the variation in NeNe and the degree to which this is correlated with the census population size and sampling success. Clade addition beyond a limited study group can overcome poor sampling for the GMYC method in particular under variable NeNe. This effect was less pronounced for methods of species delimitation not based on coalescent models

    A state machine system for insider threat detection

    No full text
    The risk from insider threats is rising significantly, yet the majority of organizations are ill-prepared to detect and mitigate them. Research has focused on providing rule-based detection systems or anomaly detection tools which use features indicative of malicious insider activity. In this paper we propose a system complimentary to the aforementioned approaches. Based on theoretical advances in describing attack patterns for insider activity, we design and validate a state-machine system that can effectively combine policies from rule-based systems and alerts from anomaly detection systems to create attack patterns that insiders follow to execute an attack. We validate the system in terms of effectiveness and scalability by applying it on ten synthetic scenarios. Our results show that the proposed system allows analysts to craft novel attack patterns and detect insider activity while requiring minimum computational time and memory

    p53 regulation by TRP2 is not pervasive in melanoma

    Get PDF
    p53 is a central tumor suppressor protein and its inhibition is believed to be a prerequisite for cancer development. In approximately 50% of all malignancies this is achieved by inactivating mutations in the p53 gene. However, in several cancer entities, including melanoma, p53 mutations are rare. It has been recently proposed that tyrosinase related protein 2 (TRP2), a protein involved in melanin synthesis, may act as suppressor of the p53 pathway in melanoma. To scrutinize this notion we analyzed p53 and TRP2 expression by immunohistochemistry in 172 melanoma tissues and did not find any correlation. Furthermore, we applied three different TRP2 shRNAs to five melanoma cell lines and could not observe a target specific effect of the TRP2 knockdown on either p53 expression nor p53 reporter gene activity. Likewise, ectopic expression of TRP2 in a TRP2 negative melanoma cell line had no impact on p53 expression. In conclusion our data suggest that p53 repression critically controlled by TRP2 is not a general event in melanoma
    corecore