333 research outputs found

    6 DOF Nonlinear AUV Simulation Toolbox

    Get PDF
    Proceedings IEEE, Oceans 97, Halifax; IEEE CD-ROM 0-7803-4111-

    Novel missense variants in the RNF213 gene from a European family with Moyamoya disease

    Get PDF
    In this report, we present a European family with six individuals affected with Moyamoya disease (MMD). We detected two novel missense variants in the Moyamoya susceptibility gene RNF213, c.12553A>G (p.(Lys4185Glu)) and c.12562G>A (p.(Ala4188Thr)). Cosegregation of the variants with MMD, as well as a previous report of a variant affecting the same amino acid residue in unrelated MMD patients, supports the role of RNF213 in the pathogenesis of MM

    Recycling oriented vertical vibratory separation of copper and polypropylene particles

    Get PDF
    Vibration has been employed in various engineering processes for material handling. The famous Brazil nut effect, large particles tend to rise to the top under vibration, initiates various research about vibration induced particle segregation. Particle size and density are two determining factors for their behaviour under vibration. Previous research in University of Nottingham proves vertical vibratory separation to be a promising environmental friendly mechanical separation method for recycling metallic fraction from shredded Waste Electric and Electronic Equipment (WEEE) stream. A pilot scale thin cell vibratory separator has been developed to investigate the potential for WEEE recycling applications. Shredded copper and polypropylene particles have been chosen to mimic metallic and non-metallic fractions in WEEE. Vibratory separation experiment with controlled environment and addition of solid lubricant are presented in this paper. The result demonstrates the effect of relative humidity and solid lubricant on improving flowability of granular system hence successful vibratory separation. The proposed mechanisms for the presence of moisture and solid lubricant are lubricant effect and elimination of static electricity

    Left atrial voltage, circulating biomarkers of fibrosis, and atrial fibrillation ablation. A prospective cohort study.

    Get PDF
    Aims To test the ability of four circulating biomarkers of fibrosis, and of low left atrial voltage, to predict recurrence of atrial fibrillation after catheter ablation. Background Circulating biomarkers potentially may be used to improve patient selection for atrial fibrillation ablation. Low voltage areas in the left atrium predict arrhythmia recurrence when mapped in sinus rhythm. This study tested type III procollagen N terminal peptide (PIIINP), galectin-3 (gal-3), fibroblast growth factor 23 (FGF-23), and type I collagen C terminal telopeptide (ICTP), and whether low voltage areas in the left atrium predicted atrial fibrillation recurrence, irrespective of the rhythm during mapping. Methods 92 atrial fibrillation ablation patients were studied. Biomarker levels in peripheral and intra-cardiac blood were measured with enzyme-linked immunosorbent assay. Low voltage (<0.5mV) was expressed as a proportion of the mapped left atrial surface area. Follow-up was one year. The primary endpoint was recurrence of arrhythmia. The secondary endpoint was a composite of recurrence despite two procedures, or after one procedure if no second procedure was undertaken. Results The biomarkers were not predictive of either endpoint. After multivariate Cox regression analysis, high proportion of low voltage area in the left atrium was found to predict the primary endpoint in sinus rhythm mapping (hazard ratio 4.323, 95% confidence interval 1.337–13.982, p = 0.014) and atrial fibrillation mapping (hazard ratio 5.195, 95% confidence interval 1.032–26.141, p = 0.046). This effect was also apparent for the secondary endpoint. Conclusion The studied biomarkers do not predict arrhythmia recurrence after catheter ablation. Left atrial voltage is an independent predictor of recurrence, whether the left atrium is mapped in atrial fibrillation or sinus rhythm

    Novel non-invasive algorithm to identify the origins of re-entry and ectopic foci in the atria from 64-lead ECGs: A computational study.

    Get PDF
    Atrial tachy-arrhytmias, such as atrial fibrillation (AF), are characterised by irregular electrical activity in the atria, generally associated with erratic excitation underlain by re-entrant scroll waves, fibrillatory conduction of multiple wavelets or rapid focal activity. Epidemiological studies have shown an increase in AF prevalence in the developed world associated with an ageing society, highlighting the need for effective treatment options. Catheter ablation therapy, commonly used in the treatment of AF, requires spatial information on atrial electrical excitation. The standard 12-lead electrocardiogram (ECG) provides a method for non-invasive identification of the presence of arrhythmia, due to irregularity in the ECG signal associated with atrial activation compared to sinus rhythm, but has limitations in providing specific spatial information. There is therefore a pressing need to develop novel methods to identify and locate the origin of arrhythmic excitation. Invasive methods provide direct information on atrial activity, but may induce clinical complications. Non-invasive methods avoid such complications, but their development presents a greater challenge due to the non-direct nature of monitoring. Algorithms based on the ECG signals in multiple leads (e.g. a 64-lead vest) may provide a viable approach. In this study, we used a biophysically detailed model of the human atria and torso to investigate the correlation between the morphology of the ECG signals from a 64-lead vest and the location of the origin of rapid atrial excitation arising from rapid focal activity and/or re-entrant scroll waves. A focus-location algorithm was then constructed from this correlation. The algorithm had success rates of 93% and 76% for correctly identifying the origin of focal and re-entrant excitation with a spatial resolution of 40 mm, respectively. The general approach allows its application to any multi-lead ECG system. This represents a significant extension to our previously developed algorithms to predict the AF origins in association with focal activities

    Abrasion resistance and compressive strength of unprocessed rice husk ash concrete

    Get PDF
    This paper investigates the effects of adding natural rice husk ash collected from uncontrolled burning and without previous grinding (NRHA) as cement replacement in concrete. To obtain an adequate particle size, NRHA was mixed with coarse aggregate for a convenient period of time before adding the other components. Compressive strength, water absorption, porosity, and abrasion resistance expressed as weight loss were examined. Test results show that decreasing the particle size through mixing with coarse aggregate improved the compressive strength, reduced the permeability, and increased the abrasion resistance of concrete. By mixing NRHA with aggregate for 8 min, abrasion resistance improved by 10.35 and 23.62% over the control concrete at 28 and 91 days, respectively. Incorporating NRHA in concrete by grinding with coarse aggregate during the mixing process could be suitable for making normal-strength concrete and for applications where abrasion resistance is an important parameter. In addition, using NRHA as a partial replacement cement contributes to the reduction of CO2 emissions due to the production of cement

    Salt tolerance of halophytes, research questions reviewed in the perspective of saline agriculture

    Get PDF
    Halophytes of the lower coastal salt marsh show increased salt tolerance, and under high salinity they grow faster than upper marsh species. We could not show reduced growth rate of halophytes compared with glycophytes when grown under non-saline conditions. This indicates limited energy costs associated with high-salt tolerance in plants of genera such as Salicornia, providing a good perspective of saline agriculture cultivating Salicornia as a vegetable crop.We show that halophytes do not occur on non-saline or inland sites because of a reduced growth rate at low soil salinity, but probably due to other ecological traits of glycophytic upper marsh species. These traits provide competitive advantage over lower salt marsh halophytes, such as earlier germination and increased growing season length.Some halophytic Amaranthaceae (Salicornioideae, Chenopodioideae and Suaedoideae) are not just highly salt tolerant, their growth rate is stimulated at a salinity range of 150–300 mM NaCl. Alternatively this may be described as depressed growth at low salinity.Selective pressure for such high-salt tolerance and salt stimulated growth likely occurred with prevailing arid climate and saline soil conditions. Under such conditions highly-salt tolerant succulent Salicornioideae, Chenopodioidea and Suaedoideae may have evolved about 65 Mya. In the context of evolution and diversication of land plants this origin of highly-salt tolerant succulent plants is relatively recent.Such high-salt tolerance might be characterized as constitutive in comparison with inducible (lower) salt tolerance of other dicotyledonae and monocotyledonae (Poaceae) species. Levels of salt tolerance of the latter type span a large range of low, intermediate to high-salt tolerance, but do not include salt stimulated growth. Salt tolerant traits of the latter inducible type appear to have evolved repeatedly and independently.Early highly-salt tolerant succulent Salicornioideae, Chenopodioidea and Suaedoideae were perennial and frost sensitive and occurred in warm temperate and Mediterranean regions. A shift from the perennial Sarcocornia to an annual life form has been phylogenetically dated circa 9.4–4.2 Mya and enabled evolution of annual hygrohalophytes in more northern coastal locations up to boreal and subarctic coastal sites avoiding damage of winter frost. Diversification of such hygrohalophytes was facilitated by polyploidization (e.g. occurrence of tetraploid and diploid Salicornia species), and a high degree of inbreeding allowing sympatric occurrence of Salicornia species in coastal salt marshes.High-level salt tolerance is probably a very complex polygenic trait. It is unlikely that glycophytes would accommodate the appropriate allelic variants at all the loci involved in halophyte salt tolerance. This might explain why attempts to improve crop salt tolerance through conventional breeding and selection have been unsuccessful to date.Genetic engineering provides a viable alternative, but the choice for the appropriate transgenes is hampered by a fundamental lack of knowledge of the mechanisms of salt tolerance in halophytes. The chances to identify the determinant genes through QTL analyses, or comparisons among near isogenic lines (NILS) are limited. Salt-tolerance is usually a species-wide trait in halophytes, and intra-specific divergence in salt tolerance in facultative halophytes seems to be often associated with chromosomal incompatibility.A variety of candidate salt tolerance genes been identified in Arabidopsis thaliana, among which genes encoding Na+ and K+ transporters, and genes involved in the general stress or anti-oxidant response, or in compatible solute metabolism. Many of these genes have been over-expressed in different glycophytic hosts, which usually appeared to alleviate, to some degree, the response to high salinity levels. However, with few exceptions, there are no indications that the same genes would be responsible for the superior salt tolerance in (eu)halophytes. Comparisons of gene expression and gene promoter activity patterns between halophytes and glycophytes are, with few exceptions, virtually lacking, which is a major omission in current day salt tolerance research.Full-genome transcriptomic comparisons between halophytes and related glycophytes through deep sequencing seem to be the most promising strategy to identify candidate genetic determinants of the difference in salt tolerance between halophytes and glycophytes.The most reliable validation of any candidate gene is through silencing the gene in the halophytic genetic background, preferably down to the level at which it is expressed in the glycophyte reference species. This requires genetically accessible halophyte models, which are not available to date, with the exception of Thellungiella halophila. However, more models are required, particularly because T. halophila is not a typical halophyte. Eventually, the pyramiding of validated salt tolerance genes under suitable promoters may be expected to be a viable strategy for crop salt tolerance improvement

    A multicenter assessment of interreader reliability of LI-RADS version 2018 for MRI and CT

    Get PDF
    Background: Various limitations have impacted research evaluating reader agreement for Liver Imaging-Reporting and Data System (LI-RADS). Purpose: To assess reader agreement of LI-RADS in an international multi-center, multireader setting using scrollable images. Materials and Methods: This retrospective study used de-identified clinical multiphase CT and MRI examinations and reports with at least one untreated observation from six institutions and three countries; only qualifying examinations were submitted. Examination dates were October 2017 – August 2018 at the coordinating center. One untreated observation per examination was randomly selected using observation identifiers, and its clinically assigned features were extracted from the report. The corresponding LI-RADS v2018 category was computed as a re-scored clinical read. Each examination was randomly assigned to two of 43 research readers who independently scored the observation. Agreement for an ordinal modified four-category LI-RADS scale (LR-1/2, LR-3, LR-4, LR-5/M/tumor in vein) was computed using intra-class correlation coefficients (ICC). Agreement was also computed for dichotomized malignancy (LR-4/LR5/LR-M/LR-tumor in vein), LR-5, and LR-M. Agreement was compared between researchversus-research reads and research-versus-clinical reads. Results: 484 patients (mean age, 62 years ±10 [SD]; 156 women; 93 CT, 391 MRI) were included. ICCs for ordinal LI-RADS, dichotomized malignancy, LR-5, and LR-M were 0.68 (95% CI: 0.62, 0.74), 0.63 (95% CI: 0.56, 0.71), 0.58 (95% CI: 0.50, 0.66), and 0.46 (95% CI: 0.31, 0.61) respectively. Research-versus-research reader agreement was higher than research-versus-clinical agreement for modified four-category LI-RADS (ICC, 0.68 vs. 0.62, P = .03) and for dichotomized malignancy (ICC, 0.63 vs. 0.53, P = .005), but not for LR-5 (P = .14) or LR-M (P = .94). Conclusion: There was moderate agreement for Liver Imaging-Reporting and Data System v2018 overall. For some comparisons, research-versus-research reader agreement was higher than research-versus-clinical reader agreement, indicating differences between the clinical and research environments that warrant further study

    Increased Expression of the Auxiliary β(2)-subunit of Ventricular L-type Ca(2+) Channels Leads to Single-Channel Activity Characteristic of Heart Failure

    Get PDF
    BACKGROUND: Increased activity of single ventricular L-type Ca(2+)-channels (L-VDCC) is a hallmark in human heart failure. Recent findings suggest differential modulation by several auxiliary β-subunits as a possible explanation. METHODS AND RESULTS: By molecular and functional analyses of human and murine ventricles, we find that enhanced L-VDCC activity is accompanied by altered expression pattern of auxiliary L-VDCC β-subunit gene products. In HEK293-cells we show differential modulation of single L-VDCC activity by coexpression of several human cardiac β-subunits: Unlike β(1) or β(3) isoforms, β(2a) and β(2b) induce a high-activity channel behavior typical of failing myocytes. In accordance, β(2)-subunit mRNA and protein are up-regulated in failing human myocardium. In a model of heart failure we find that mice overexpressing the human cardiac Ca(V)1.2 also reveal increased single-channel activity and sarcolemmal β(2) expression when entering into the maladaptive stage of heart failure. Interestingly, these animals, when still young and non-failing (“Adaptive Phase”), reveal the opposite phenotype, viz : reduced single-channel activity accompanied by lowered β(2) expression. Additional evidence for the cause-effect relationship between β(2)-subunit expression and single L-VDCC activity is provided by newly engineered, double-transgenic mice bearing both constitutive Ca(V)1.2 and inducible β(2) cardiac overexpression. Here in non-failing hearts induction of β(2)-subunit overexpression mimicked the increase of single L-VDCC activity observed in murine and human chronic heart failure. CONCLUSIONS: Our study presents evidence of the pathobiochemical relevance of β(2)-subunits for the electrophysiological phenotype of cardiac L-VDCC and thus provides an explanation for the single L-VDCC gating observed in human and murine heart failure
    • …
    corecore