45 research outputs found

    Development of a highly protective combination monoclonal antibody therapy against Chikungunya virus

    Get PDF
    Chikungunya virus (CHIKV) is a mosquito-transmitted alphavirus that causes global epidemics of a debilitating polyarthritis in humans. As there is a pressing need for the development of therapeutic agents, we screened 230 new mouse anti-CHIKV monoclonal antibodies (MAbs) for their ability to inhibit infection of all three CHIKV genotypes. Four of 36 neutralizing MAbs (CHK-102, CHK-152, CHK-166, and CHK-263) provided complete protection against lethality as prophylaxis in highly susceptible immunocompromised mice lacking the type I IFN receptor (Ifnar−/−) and mapped to distinct epitopes on the E1 and E2 structural proteins. CHK-152, the most protective MAb, was humanized, shown to block viral fusion, and require Fc effector function for optimal activity in vivo. In post-exposure therapeutic trials, administration of a single dose of a combination of two neutralizing MAbs (CHK-102+CHK-152 or CHK-166+CHK-152) limited the development of resistance and protected immunocompromised mice against disease when given 24 to 36 hours before CHIKV-induced death. Selected pairs of highly neutralizing MAbs may be a promising treatment option for CHIKV in humans

    Rapid, Specific Detection of Alphaviruses from Tissue Cultures Using a Replicon-Defective Reporter Gene Assay

    Get PDF
    We established a rapid, specific technique for detecting alphaviruses using a replicon-defective reporter gene assay derived from the Sindbis virus XJ-160. The pVaXJ expression vector containing the XJ-160 genome was engineered to form the expression vectors pVaXJ-EGFP expressing enhanced green fluorescence protein (EGFP) or pVaXJ-GLuc expressing Gaussia luciferase (GLuc). The replicon-defective reporter plasmids pVaXJ-EGFPΔnsp4 and pVaXJ-GLucΔnsp4 were constructed by deleting 1139 bp in the non-structural protein 4 (nsP4) gene. The deletion in the nsP4 gene prevented the defective replicons from replicating and expressing reporter genes in transfected BHK-21 cells. However, when these transfected cells were infected with an alphavirus, the non-structural proteins expressed by the alphavirus could act on the defective replicons in trans and induce the expression of the reporter genes. The replicon-defective plasmids were used to visualize the presence of alphavirus qualitatively or detect it quantitatively. Specificity tests showed that this assay could detect a variety of alphaviruses from tissue cultures, while other RNA viruses, such as Japanese encephalitis virus and Tahyna virus, gave negative results with this system. Sensitivity tests showed that the limit of detection (LOD) of this replicon-defective assay is between 1 and 10 PFU for Sindbis viruses. These results indicate that, with the help of the replicon-defective alphavirus detection technique, we can specifically, sensitively, and rapidly detect alphaviruses in tissue cultures. The detection technique constructed here may be well suited for use in clinical examination and epidemiological surveillance, as well as for rapid screening of potential viral biological warfare agents

    Chemotactic and Inflammatory Responses in the Liver and Brain Are Associated with Pathogenesis of Rift Valley Fever Virus Infection in the Mouse

    Get PDF
    Rift Valley fever virus (RVFV) is a major human and animal pathogen associated with severe disease including hemorrhagic fever or encephalitis. RVFV is endemic to parts of Africa and the Arabian Peninsula, but there is significant concern regarding its introduction into non-endemic regions and the potentially devastating effect to livestock populations with concurrent infections of humans. To date, there is little detailed data directly comparing the host response to infection with wild-type or vaccine strains of RVFV and correlation with viral pathogenesis. Here we characterized clinical and systemic immune responses to infection with wild-type strain ZH501 or IND vaccine strain MP-12 in the C57BL/6 mouse. Animals infected with live-attenuated MP-12 survived productive viral infection with little evidence of clinical disease and minimal cytokine response in evaluated tissues. In contrast, ZH501 infection was lethal, caused depletion of lymphocytes and platelets and elicited a strong, systemic cytokine response which correlated with high virus titers and significant tissue pathology. Lymphopenia and platelet depletion were indicators of disease onset with indications of lymphocyte recovery correlating with increases in G-CSF production. RVFV is hepatotropic and in these studies significant clinical and histological data supported these findings; however, significant evidence of a pro-inflammatory response in the liver was not apparent. Rather, viral infection resulted in a chemokine response indicating infiltration of immunoreactive cells, such as neutrophils, which was supported by histological data. In brains of ZH501 infected mice, a significant chemokine and pro-inflammatory cytokine response was evident, but with little pathology indicating meningoencephalitis. These data suggest that RVFV pathogenesis in mice is associated with a loss of liver function due to liver necrosis and hepatitis yet the long-term course of disease for those that might survive the initial hepatitis is neurologic in nature which is supported by observations of human disease and the BALB/c mouse model

    Rift Valley Fever – epidemiological update and risk of introduction into Europe

    Get PDF
    Rift Valley fever (RVF) is a vector-borne disease transmitted by a broad spectrum of mosquito species, especially Aedes and Culex genus, to animals (domestic and wild ruminants and camels) and humans. Rift Valley fever is endemic in sub-Saharan Africa and in the Arabian Peninsula, with periodic epidemics characterised by 5–15 years of inter-epizootic periods. In the last two decades, RVF was notified in new African regions (e.g. Sahel), RVF epidemics occurred more frequently and low-level enzootic virus circulation has been demonstrated in livestock in various areas. Recent outbreaks in a French overseas department and some seropositive cases detected in Turkey, Tunisia and Libya raised the attention of the EU for a possible incursion into neighbouring countries. The movement of live animals is the most important pathway for RVF spread from the African endemic areas to North Africa and the Middle East. The movement of infected animals and infected vectors when shipped by flights, containers or road transport is considered as other plausible pathways of introduction into Europe. The overall risk of introduction of RVF into EU through the movement of infected animals is very low in all the EU regions and in all MSs (less than one epidemic every 500 years), given the strict EU animal import policy. The same level of risk of introduction in all the EU regions was estimated also considering the movement of infected vectors, with the highest level for Belgium, Greece, Malta, the Netherlands (one epidemic every 228–700 years), mainly linked to the number of connections by air and sea transports with African RVF infected countries. Although the EU territory does not seem to be directly exposed to an imminent risk of RVFV introduction, the risk of further spread into countries neighbouring the EU and the risks of possible introduction of infected vectors, suggest that EU authorities need to strengthen their surveillance and response capacities, as well as the collaboration with North African and Middle Eastern countries.info:eu-repo/semantics/publishedVersio

    Detection of chikungunya virus‐specific IgM on laser‐cut paper‐based device using pseudo‐particles as capture antigen

    No full text
    International audienceThe incidence of arbovirus infections has increased dramatically in recent decades, affecting hundreds of millions of people each year. The Togaviridae family includes the chikungunya virus (CHIKV), which is typically transmitted by Aedes mosquitoes and causes a wide range of symptoms from flu-like fever to severe arthralgia. Although conventional diagnostic tests can provide early diagnosis of CHIKV infections, access to these tests is often limited in developing countries. Consequently, there is an urgent need to develop efficient, affordable, simple, rapid, and robust diagnostic tools that can be used in point-of-care settings. Early diagnosis is crucial to improve patient management and to reduce the risk of complications. A glass-fiber laser-cut microfluidic device (paper-based analytical device [PAD]) was designed and evaluated in a proof of principle context, for the analysis of 30 µL of patient serum. Biological raw materials used for the functionalization of the PAD were first screened by MAC-ELISA (IgM capture enzyme-linked immunosorbent assay) for CHIKV Immunoglobulin M (IgM) capture and then evaluated on the PAD using various human samples. Compared with viral lysate traditionally used for chikungunya (CHIK) serology, CHIKV pseudo-particles (PPs) have proven to be powerful antigens for specific IgM capture. The PAD was able to detect CHIKV IgM in human sera in less than 10 minutes. Results obtained in patient sera showed a sensitivity of 70.6% and a specificity of around 98%. The PAD showed few cross-reactions with other tropical viral diseases. The PAD could help health workers in the early diagnosis of tropical diseases such as CHIK, which require specific management protocols in at-risk populations
    corecore