142 research outputs found

    RegenBase: a knowledge base of spinal cord injury biology for translational research.

    Get PDF
    Spinal cord injury (SCI) research is a data-rich field that aims to identify the biological mechanisms resulting in loss of function and mobility after SCI, as well as develop therapies that promote recovery after injury. SCI experimental methods, data and domain knowledge are locked in the largely unstructured text of scientific publications, making large scale integration with existing bioinformatics resources and subsequent analysis infeasible. The lack of standard reporting for experiment variables and results also makes experiment replicability a significant challenge. To address these challenges, we have developed RegenBase, a knowledge base of SCI biology. RegenBase integrates curated literature-sourced facts and experimental details, raw assay data profiling the effect of compounds on enzyme activity and cell growth, and structured SCI domain knowledge in the form of the first ontology for SCI, using Semantic Web representation languages and frameworks. RegenBase uses consistent identifier schemes and data representations that enable automated linking among RegenBase statements and also to other biological databases and electronic resources. By querying RegenBase, we have identified novel biological hypotheses linking the effects of perturbagens to observed behavioral outcomes after SCI. RegenBase is publicly available for browsing, querying and download.Database URL:http://regenbase.org

    Docosahexaenoic acid reduces microglia phagocytic activity via miR-124 and induces neuroprotection in rodent models of spinal cord contusion injury

    Get PDF
    Microglia are activated after spinal cord injury (SCI), but their phagocytic mechanisms and link to neuroprotection remain incompletely characterized. Docosahexaenoic acid (DHA) has been shown to have significant neuroprotective effects after hemisection and compression SCI and can directly affect microglia in these injury models. In rodent contusion SCI, we demonstrate that DHA (500 nmol/kg) administered acutely post-injury confers neuroprotection and enhances locomotor recovery, and also exerts a complex modulation of the microglial response to injury. In rodents, at 7 days after SCI, the level of phagocytosed myelin within Iba1-positive or P2Y12-positive cells was significantly lower after DHA treatment, and this occurred in parallel with an increase in intracellular miR-124 expression. Furthermore, intraspinal administration of a miR-124 inhibitor significantly reduced the DHA-induced decrease in myelin phagocytosis in mice at 7 days post-SCI. In rat spinal primary microglia cultures, DHA reduced the phagocytic response to myelin, which was associated with an increase in miR-124, but not miR-155. A similar response was observed in a microglia cell line (BV2) treated with DHA, and the effect was blocked by a miR-124 inhibitor. Furthermore, the phagocytic response of BV2 cells to stressed neurones was also reduced in the presence of DHA. In peripheral monocyte-derived macrophages, the expression of the M1, but not the M0 or M2 phenotype, was reduced by DHA, but the phagocytic activation was not altered. These findings show that DHA induces neuroprotection in contusion injury. Furthermore, the improved outcome is via a miR-124-dependent reduction in the phagocytic response of microglia.US Department of Defence CDMRP/SCIRP award (W81XWH-10-1-1040 to P.K.Y., T.B. and A.M.T.); The Barts and London Charity (to P.K.Y. and A.M.T.); Rod Flower Vacation Scholarship (to A.L.B.); International Spinal Research Trust (to J.H. and P.G.P.); Ray W. Poppleton Endowment (to P.G.P.); Chang Gung Memorial Hospital, Taiwan (CMRPG3A1051–1054 to Z.-H.L.). M.A.B. is funded by the Spanish Ministry of Economy and Competitivity (Programa Ramón y Cajal: RYC-2017-21804)

    Clinical Application of Computer-Aided Diagnostic System for Harmonious Introduction of Complementary Dialysis Therapy

    Get PDF
    In chronic peritoneal dialysis (PD) therapy, peritoneal permeability is gradually enhanced over the duration of the therapeutic course, leading to a grave decline in the therapeutic efficiency. In recent years, a novel therapy (CD therapy), which integrates PD therapy with hemodialysis therapy, is being applied to end-stage PD patients to complement the decline of therapeutic efficiency caused by the grave degeneration of the peritoneal tissue. To realize a harmonious introduction of the CD therapy, this study developed a useful index (KAu/c), which evaluates both therapeutic efficiency and degeneration of peritoneal tissue. Using a mathematical model and KAu/c, we were able to validate the therapeutic efficiency in the PD patients, and, in one case, propose a better prescription for the patient by employing the CD therapy. The clinical implementation of this methodology is indispensable with regard to expanding the therapeutic monitoring system for renal replacement therapy

    Uncovering treatment burden as a key concept for stroke care: a systematic review of qualitative research

    Get PDF
    <b>Background</b> Patients with chronic disease may experience complicated management plans requiring significant personal investment. This has been termed ‘treatment burden’ and has been associated with unfavourable outcomes. The aim of this systematic review is to examine the qualitative literature on treatment burden in stroke from the patient perspective.<p></p> <b>Methods and findings</b> The search strategy centred on: stroke, treatment burden, patient experience, and qualitative methods. We searched: Scopus, CINAHL, Embase, Medline, and PsycINFO. We tracked references, footnotes, and citations. Restrictions included: English language, date of publication January 2000 until February 2013. Two reviewers independently carried out the following: paper screening, data extraction, and data analysis. Data were analysed using framework synthesis, as informed by Normalization Process Theory. Sixty-nine papers were included. Treatment burden includes: (1) making sense of stroke management and planning care, (2) interacting with others, (3) enacting management strategies, and (4) reflecting on management. Health care is fragmented, with poor communication between patient and health care providers. Patients report inadequate information provision. Inpatient care is unsatisfactory, with a perceived lack of empathy from professionals and a shortage of stimulating activities on the ward. Discharge services are poorly coordinated, and accessing health and social care in the community is difficult. The study has potential limitations because it was restricted to studies published in English only and data from low-income countries were scarce.<p></p> <b>Conclusions</b> Stroke management is extremely demanding for patients, and treatment burden is influenced by micro and macro organisation of health services. Knowledge deficits mean patients are ill equipped to organise their care and develop coping strategies, making adherence less likely. There is a need to transform the approach to care provision so that services are configured to prioritise patient needs rather than those of health care systems

    The Spider Effect: Morphological and Orienting Classification of Microglia in Response to Stimuli in Vivo

    Get PDF
    The different morphological stages of microglial activation have not yet been described in detail. We transected the olfactory bulb of rats and examined the activation of the microglial system histologically. Six stages of bidirectional microglial activation (A) and deactivation (R) were observed: from stage 1A to 6A, the cell body size increased, the cell process number decreased, and the cell processes retracted and thickened, orienting toward the direction of the injury site; until stage 6A, when all processes disappeared. In contrast, in deactivation stages 6R to 1R, the microglia returned to the original site exhibiting a stepwise retransformation to the original morphology. Thin highly branched processes re-formed in stage 1R, similar to those in stage 1A. This reverse transformation mirrored the forward transformation except in stages 6R to 1R: cells showed multiple nuclei which were slowly absorbed. Our findings support a morphologically defined stepwise activation and deactivation of microglia cells

    Glycan-dependent binding of galectin-1 to neuropilin-1 promotes axonal regeneration after spinal cord injury

    Get PDF
    Following spinal cord injury (SCI), semaphorin 3A (Sema3A) prevents axonal regeneration through binding to the neuropilin-1 (NRP-1)/PlexinA4 receptor complex. Here, we show that galectin-1 (Gal-1), an endogenous glycan-binding protein, selectively bound to the NRP-1/PlexinA4 receptor complex in injured neurons through a glycan-dependent mechanism, interrupts the Sema3A pathway and contributes to axonal regeneration and locomotor recovery after SCI. Although both Gal-1 and its monomeric variant contribute to de-activation of microglia, only high concentrations of wild-type Gal-1 (which co-exists in a monomer-dimer equilibrium) bind to the NRP-1/PlexinA4 receptor complex and promote axonal regeneration. Our results show that Gal-1, mainly in its dimeric form, promotes functional recovery of spinal lesions by interfering with inhibitory signals triggered by Sema3A binding to NRP-1/PlexinA4 complex, supporting the use of this lectin for the treatment of SCI patients.Fil: Quintá, Héctor Ramiro. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Química y Fisicoquímica Biológicas; ArgentinaFil: Pasquini, Juana Maria. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Química y Fisicoquímica Biológicas; ArgentinaFil: Rabinovich, Gabriel Adrian. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental (i); Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; ArgentinaFil: Pasquini, Laura Andrea. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Química y Fisicoquímica Biológicas; Argentin

    Transcription and Translation Products of the Cytolysin Gene psm-mec on the Mobile Genetic Element SCCmec Regulate Staphylococcus aureus Virulence

    Get PDF
    The F region downstream of the mecI gene in the SCCmec element in hospital-associated methicillin-resistant Staphylococcus aureus (HA-MRSA) contains two bidirectionally overlapping open reading frames (ORFs), the fudoh ORF and the psm-mec ORF. The psm-mec ORF encodes a cytolysin, phenol-soluble modulin (PSM)-mec. Transformation of the F region into the Newman strain, which is a methicillin-sensitive S. aureus (MSSA) strain, or into the MW2 (USA400) and FRP3757 (USA300) strains, which are community-acquired MRSA (CA-MRSA) strains that lack the F region, attenuated their virulence in a mouse systemic infection model. Introducing the F region to these strains suppressed colony-spreading activity and PSMα production, and promoted biofilm formation. By producing mutations into the psm-mec ORF, we revealed that (i) both the transcription and translation products of the psm-mec ORF suppressed colony-spreading activity and promoted biofilm formation; and (ii) the transcription product of the psm-mec ORF, but not its translation product, decreased PSMα production. These findings suggest that both the psm-mec transcript, acting as a regulatory RNA, and the PSM-mec protein encoded by the gene on the mobile genetic element SCCmec regulate the virulence of Staphylococcus aureus

    The effect of body weight on altered expression of nuclear receptors and cyclooxygenase-2 in human colorectal cancers

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Epidemiological studies on risk factors for colorectal cancer (CRC) have mainly focused on diet, and being overweight is now recognized to contribute significantly to CRC risk. Overweight and obesity are defined as an excess of adipose tissue mass and are associated with disorders in lipid metabolism. Peroxisome proliferator-activated receptors (PPARs) and retinoid-activated receptors (RARs and RXRs) are important modulators of lipid metabolism and cellular homeostasis. Alterations in expression and activity of these ligand-activated transcription factors might be involved in obesity-associated diseases, which include CRC. Cyclooxygenase-2 (COX-2) also plays a critical role in lipid metabolism and alterations in COX-2 expression have already been associated with unfavourable clinical outcomes in epithelial tumors. The objective of this study is to examine the hypothesis questioning the relationship between alterations in the expression of nuclear receptors and COX-2 and the weight status among male subjects with CRC.</p> <p>Method</p> <p>The mRNA expression of the different nuclear receptor subtypes and of COX-2 was measured in 20 resected samples of CRC and paired non-tumor tissues. The association between expression patterns and weight status defined as a body mass index (BMI) was statistically analyzed.</p> <p>Results</p> <p>No changes were observed in PPARγ mRNA expression while the expression of PPARδ, retinoid-activated receptors and COX-2 were significantly increased in cancer tissues compared to normal colon mucosa (<it>P </it>≤ 0.001). The weight status appeared to be an independent factor, although we detected an increased level of COX-2 expression in the normal mucosa from overweight patients (BMI ≥ 25) compared to subjects with healthy BMI (<it>P </it>= 0.002).</p> <p>Conclusion</p> <p>Our findings show that alterations in the pattern of nuclear receptor expression observed in CRC do not appear to be correlated with patient weight status. However, the analysis of COX-2 expression in normal colon mucosa from subjects with a high BMI suggests that COX-2 deregulation might be driven by excess weight during the colon carcinogenesis process.</p

    Inflammogenesis of Secondary Spinal Cord Injury

    Get PDF
    Spinal cord injury (SCI) and spinal infarction lead to neurological complications and eventually to paraplegia or quadriplegia. These extremely debilitating conditions are major contributors to morbidity. Our understanding of SCI has certainly increased during the last decade, but remains far from clear. SCI consists of two defined phases: the initial impact causes primary injury, which is followed by a prolonged secondary injury consisting of evolving sub-phases that may last for years. The underlying pathophysiological mechanisms driving this condition are complex. Derangement of the vasculature is a notable feature of the pathology of SCI. In particular, an important component of SCI is the ischemia-reperfusion injury (IRI) that leads to endothelial dysfunction and changes in vascular permeability. Indeed, together with endothelial cell damage and failure in homeostasis, ischemia reperfusion injury triggers full-blown inflammatory cascades arising from activation of residential innate immune cells (microglia and astrocytes) and infiltrating leukocytes (neutrophils and macrophages). These inflammatory cells release neurotoxins (proinflammatory cytokines and chemokines, free radicals, excitotoxic amino acids, nitric oxide (NO)), all of which partake in axonal and neuronal deficit. Therefore, our review considers the recent advances in SCI mechanisms, whereby it becomes clear that SCI is a heterogeneous condition. Hence, this leads towards evidence of a restorative approach based on monotherapy with multiple targets or combinatorial treatment. Moreover, from evaluation of the existing literature, it appears that there is an urgent requirement for multi-centered, randomized trials for a large patient population. These clinical studies would offer an opportunity in stratifying SCI patients at high risk and selecting appropriate, optimal therapeutic regimens for personalized medicine.Grant #NPRP 4-571-3-171 from the Qatar National Research Fund(a member of Qatar Foundation)
    corecore