1,274 research outputs found

    Analysis of risk factors for canine mast cell tumors based on the Kiupel and Patnaik grading system among dogs with skin tumors

    Get PDF
    Background: Skin tumors are the most frequently diagnosed lesions, of which 7%-21% are mast cell tumors (MCTs). There is a great effort to identify factors that can influence the prospective course of MCTs. Although, the histological grade is considering an important predictor helping to determine the malignancy and metastatic potential of MCTs. Aim: In this study, an epidemiological analysis of risk factors (breed, age, sex, and anatomical site) for dogs having MCTs was evaluated considering the respective MCTs histological grade in comparison to other skin tumors. Methods: The study included 244 dogs affected by cutaneous MCTs from a universe of 1,185 dogs diagnosed with skin tumors. A univariable analysis with Fisher exact test was performed to determine the odds ratios (ORs) with 95% confidence intervals (CIs). Results: Boxers had a higher predisposition to Patnaik's grade I (OR = 5.9, 95% CI 2.648-13.152) and to Kiupel's low-grade MCTs (OR = 2.6, 95% CI 1.539-4.447). Labrador retrievers (OR = 2.1, 95% CI 1.423-3.184), and pugs (OR = 12.9, 95% CI 2.336-70.931) had a predisposition for Patnaik's grade II MCTs and Kiupel's low-grade lesions (OR = 2.3, 95% CI 1.478-3.597; OR = 17.1, 95% CI 3.093-94.377, respectively). French bulldogs had a higher risk to grade III MCTs (OR = 7.9, 95% CI 2.381-26.072). Pit bulls had a predisposition to grade III MCTs and Kiupel's high-grade tumors (OR = 4.4, 95% CI 1.221-16.1 and OR = 4.962, 95% CI 1.362-18.077, respectively). Bull terriers (OR = 12.7, 95% CI 2.098-76.818) presented higher risk for having low-grade MCTs. The perigenital area and trunk exhibit a greater risk for high grading lesion (OR = 6.6, 95% CI 2.679-16.334; OR = 1.9, 95% CI 1.028-3.395, respectively) and the limbs had a predisposition to grade II tumor (OR = 1.6, 95% CI 1.134-2.395). A decreased risk of having MCT was seen in older dogs (from 7-10 years to 11-18 years) compared to that in the reference group (4-6 years). Conclusion: When comparing to canine skin tumors, this study showed a relationship between MCT histological grading and the risk factors, age, breed, and topography of canine MCTs. The variations noted in the clinical presentation of MCTs amongst predisposed dog breeds reinforces the relevance of the genetic background in MCTs carcinogenesis

    Retrospective study of canine cutaneous tumors submitted to a diagnostic pathology laboratory in Northern Portugal (2014-2020)

    Get PDF
    Background Cutaneous neoplastic diseases are the most and second-most frequently reported tumors in male and female dogs, respectively. The aims of this study were to report the occurrence of canine cutaneous tumors in a pathology laboratory located in Northern Portugal between 2014 and 2020, and to characterize and categorize the anatomical locations, breed, age, and sex of the animals affected with different types of neoplasms. Results Throughout the 7-year study, 1,185 cases were diagnosed as cutaneous tumors, with 62.9% being classified as benign, and 37.1% as malignant. Mast cell tumors (22.7%) were the most frequently diagnosed tumor type, followed by benign soft tissue tumors (9.7%), sebaceous gland tumors (8.1%), vascular tumors (7.9%) and soft tissue sarcomas (7.6%). Cutaneous tumors commonly exhibited multicentric occurrence (14.6%) followed by single occurrence in hindlimb (12.1%), forelimb (8.6%), buttock (7.1%), abdominal (6.5%) and costal (5.2%) areas. The odds of developing cutaneous neoplasia were higher with increasing age (p < 0.001). Females had an increased odds of developing skin tumors compared to males (crude OR = 2.99, 95% (2.51, 3.55); adj OR = 2.93, 95% (2.46, 3.49). Purebred dogs, as a group, showed a reduced odds of developing cutaneous tumors when compared to mixed-breed dogs (crude OR = 0.63, 95% (0.53, 0.74); adj OR = 0.75, 95% (0.62, 0.89). Conclusions Mast cell tumors, benign soft tissue tumors and sebaceous tumors were the most common histotypes encountered. The epidemiological survey achieved with this study demonstrates the relative frequency of different types of tumors in this particular population. Furthermore, the results herein achieved can act as a basis or a beneficial reference for local veterinarians helping in the establishment of a preliminary and presumptive diagnosis of canine cutaneous tumors histotypes

    A survey on feature weighting based K-Means algorithms

    Get PDF
    This is a pre-copyedited, author-produced PDF of an article accepted for publication in Journal of Classification [de Amorim, R. C., 'A survey on feature weighting based K-Means algorithms', Journal of Classification, Vol. 33(2): 210-242, August 25, 2016]. Subject to embargo. Embargo end date: 25 August 2017. The final publication is available at Springer via http://dx.doi.org/10.1007/s00357-016-9208-4 © Classification Society of North America 2016In a real-world data set there is always the possibility, rather high in our opinion, that different features may have different degrees of relevance. Most machine learning algorithms deal with this fact by either selecting or deselecting features in the data preprocessing phase. However, we maintain that even among relevant features there may be different degrees of relevance, and this should be taken into account during the clustering process. With over 50 years of history, K-Means is arguably the most popular partitional clustering algorithm there is. The first K-Means based clustering algorithm to compute feature weights was designed just over 30 years ago. Various such algorithms have been designed since but there has not been, to our knowledge, a survey integrating empirical evidence of cluster recovery ability, common flaws, and possible directions for future research. This paper elaborates on the concept of feature weighting and addresses these issues by critically analysing some of the most popular, or innovative, feature weighting mechanisms based in K-Means.Peer reviewedFinal Accepted Versio

    Sensitivity of a Satellite Algorithm for Harmful Algal Bloom Discrimination to the Use of Laboratory Bio-optical Data for Training

    Get PDF
    Early detection of dense harmful algal blooms (HABs) is possible using ocean colour remote sensing. Some algorithms require a training dataset, usually constructed from satellite images with a priori knowledge of the existence of the bloom. This approach can be limited if there is a lack of in situ observations, coincident with satellite images. A laboratory experiment collected biological and bio-optical data from a culture of Karenia mikimotoi, a harmful phytoplankton dinoflagellate. These data showed characteristic signals in chlorophyll-specific absorption and backscattering coefficients. The bio-optical datafromthecultureandabio-opticalmodelwereusedtoconstructatrainingdatasetfor an existing statistical classifier. MERIS imagery over the European continental shelf were processed with the classifier using different training datasets. The differences in positive ratesofdetectionofK. mikimotoi betweenusinganalgorithmtrainedwithpurelymanually selected areas on satellite images and using laboratory data as training was overall <1%. The difference was higher, <15%, when using modeled optical data rather than laboratorydata,withpotentialforimprovementiflocalaveragechlorophyllconcentrations are used. Using a laboratory-derived training dataset improved the ability of the algorithm to distinguish high turbidity from high chlorophyll concentrations. However, additional in situ observations of non-harmful high chlorophyll blooms in the area would improve testing of the ability to distinguish harmful from non-harmful high chlorophyll blooms. This approach can be expanded to use additional wavelengths, different satellite sensors and different phytoplankton genera

    Bacteria-responsive multilayer coatings comprising polycationic nanospheres for bacteria biofilm prevention on urinary catheters

    Get PDF
    This work reports on the development of infection-preventive coatings on silicone urinary catheters that contain in their structure and release on demand antibacterial polycationic nanospheres. Polycationic aminocellulose conjugate was first sonochemically processed into nanospheres to improve its antibacterial potential compared to the bulk conjugate in solution (ACSol). Afterwards the processed aminocellulose nanospheres (ACNSs) were combined with the hyaluronic acid (HA) polyanion to build a layer-by-layer construct on silicone surfaces. Although the coating deposition was more effective when HA was coupled with ACSol than with ACNSs, the ACNSs-based coatings were thicker and displayed smoother surfaces due to the embedment of intact nanospheres. The antibacterial effect of the ACNSs multilayers was by 40 % higher compared to the ACSol coatings. This fact was further translated into more effective prevention of Pseudomonas aeruginosa biofilm formation. The coatings were stable in absence of bacteria, whereas their disassembling occurred gradually during incubation with Pseudomonas aeruginosa, and thus eradicate the biofilm upon release of antibacterial agents. Only 5 bilayers of HA/ACNSs were sufficient to prevent the biofilm formation, in contrast to the 10 bilayers of ACSol required to achieve the same effect. The antibiofilm efficiency of (HA/ACNSs)10 multilayer construct built on a Foley catheter was additionally validated under dynamic conditions using a model of catheterized bladder in which the biofilm was grown during seven days.M.M.F. acknowledges the support of the European Commissionunder the Marie Curie Intra-European Fellowship (IEF) Program (Grant Agreement ‘‘NanoQuench” FP7-331416)

    A Survey of Air-to-Ground Propagation Channel Modeling for Unmanned Aerial Vehicles

    Full text link
    In recent years, there has been a dramatic increase in the use of unmanned aerial vehicles (UAVs), particularly for small UAVs, due to their affordable prices, ease of availability, and ease of operability. Existing and future applications of UAVs include remote surveillance and monitoring, relief operations, package delivery, and communication backhaul infrastructure. Additionally, UAVs are envisioned as an important component of 5G wireless technology and beyond. The unique application scenarios for UAVs necessitate accurate air-to-ground (AG) propagation channel models for designing and evaluating UAV communication links for control/non-payload as well as payload data transmissions. These AG propagation models have not been investigated in detail when compared to terrestrial propagation models. In this paper, a comprehensive survey is provided on available AG channel measurement campaigns, large and small scale fading channel models, their limitations, and future research directions for UAV communication scenarios

    The diversity and evolution of pollination systems in large plant clades: Apocynaceae as a case study

    Get PDF
    Large clades of angiosperms are often characterized by diverse interactions with pollinators, but how these pollination systems are structured phylogenetically and biogeographically is still uncertain for most families. Apocynaceae is a clade of >5300 species with a worldwide distribution. A database representing >10 % of species in the family was used to explore the diversity of pollinators and evolutionary shifts in pollination systems across major clades and regions.The database was compiled from published and unpublished reports. Plants were categorized into broad pollination systems and then subdivided to include bimodal systems. These were mapped against the five major divisions of the family, and against the smaller clades. Finally, pollination systems were mapped onto a phylogenetic reconstruction that included those species for which sequence data are available, and transition rates between pollination systems were calculated.Most Apocynaceae are insect pollinated with few records of bird pollination. Almost three-quarters of species are pollinated by a single higher taxon (e.g. flies or moths); 7 % have bimodal pollination systems, whilst the remaining approx. 20 % are insect generalists. The less phenotypically specialized flowers of the Rauvolfioids are pollinated by a more restricted set of pollinators than are more complex flowers within the Apocynoids + Periplocoideae + Secamonoideae + Asclepiadoideae (APSA) clade. Certain combinations of bimodal pollination systems are more common than others. Some pollination systems are missing from particular regions, whilst others are over-represented.Within Apocynaceae, interactions with pollinators are highly structured both phylogenetically and biogeographically. Variation in transition rates between pollination systems suggest constraints on their evolution, whereas regional differences point to environmental effects such as filtering of certain pollinators from habitats. This is the most extensive analysis of its type so far attempted and gives important insights into the diversity and evolution of pollination systems in large clades

    Composition and Patterns of Taxa Assemblages in the Western Channel Assessed by 18S Sequencing, Microscopy and Flow Cytometry

    Get PDF
    Plankton monitoring by microscopy offers a long-term ecological perspective of plankton communities, but different detection approaches are uniquely biased. Genetic identification of marine plankton has become standard but is still not used in routine monitoring. This study assesses the value that genetic methods bring to microscopic and flow cytometry monitoring methods in the Western (English) Channel. An 18S high throughput sequencing (HTS) diversity survey of plankton taxa was performed on samples collected from an automated Water and Microplankton Sampler (WaMS) deployed on the Continuous Plankton Recorder platform (CPR) from 2011–2012. The 18S�HTS survey of WaMS samples detected contrasting but complementary taxa assemblages to that of microscopic surveys, mostly composed of smaller or naked or thin-walled plankton taxa, with most phytoplankton being under 10 µm but most taxa in the survey being mixotrophic or heterotrophic but picking up rare phytoplankton. In comparison with microscopic phytoplankton counts from the CPR survey and Western Channel Observatory station L4, only 8–12 taxonomic families were common to all three surveys, most of them dinoflagellates, with a bias towards larger diatoms and dinoflagellate taxa in microscopy surveys. Additional quantitative real-time PCR detection of two potentially harmful taxa, the pelagophyte, Aureococcus anophagefferens and four Pseudo-nitzschia from 2011–2013. This confirmed the elevated growth of A. anophagefferens in the Western Channel in the summer of 2011 and the early appearance of Pseudo-nitzschia delicatissima in that year. Individual species’ occurrence or abundance was different from their genera or other same-sized groups. Smaller phytoplankton measured by flow cytometry had distinct seasonality in the mid-Atlantic compared to coastal regions

    Self-consistent Green's function method for nuclei and nuclear matter

    Get PDF
    Recent results obtained by applying the method of self-consistent Green's functions to nuclei and nuclear matter are reviewed. Particular attention is given to the description of experimental data obtained from the (e,e'p) and (e,e'2N) reactions that determine one and two-nucleon removal probabilities in nuclei since the corresponding amplitudes are directly related to the imaginary parts of the single-particle and two-particle propagators. For this reason and the fact that these amplitudes can now be calculated with the inclusion of all the relevant physical processes, it is useful to explore the efficacy of the method of self-consistent Green's functions in describing these experimental data. Results for both finite nuclei and nuclear matter are discussed with particular emphasis on clarifying the role of short-range correlations in determining various experimental quantities. The important role of long-range correlations in determining the structure of low-energy correlations is also documented. For a complete understanding of nuclear phenomena it is therefore essential to include both types of physical correlations. We demonstrate that recent experimental results for these reactions combined with the reported theoretical calculations yield a very clear understanding of the properties of {\em all} protons in the nucleus. We propose that this knowledge of the properties of constituent fermions in a correlated many-body system is a unique feature of nuclear physics.Comment: 110 pages, accepted for publication on Prog. Part. Nucl. Phy
    corecore