15 research outputs found

    Genome-wide association study identifies six new loci influencing pulse pressure and mean arterial pressure.

    Get PDF
    Numerous genetic loci have been associated with systolic blood pressure (SBP) and diastolic blood pressure (DBP) in Europeans. We now report genome-wide association studies of pulse pressure (PP) and mean arterial pressure (MAP). In discovery (N = 74,064) and follow-up studies (N = 48,607), we identified at genome-wide significance (P = 2.7 × 10(-8) to P = 2.3 × 10(-13)) four new PP loci (at 4q12 near CHIC2, 7q22.3 near PIK3CG, 8q24.12 in NOV and 11q24.3 near ADAMTS8), two new MAP loci (3p21.31 in MAP4 and 10q25.3 near ADRB1) and one locus associated with both of these traits (2q24.3 near FIGN) that has also recently been associated with SBP in east Asians. For three of the new PP loci, the estimated effect for SBP was opposite of that for DBP, in contrast to the majority of common SBP- and DBP-associated variants, which show concordant effects on both traits. These findings suggest new genetic pathways underlying blood pressure variation, some of which may differentially influence SBP and DBP

    Genetic variants in novel pathways influence blood pressure and cardiovascular disease risk.

    Get PDF
    Blood pressure is a heritable trait influenced by several biological pathways and responsive to environmental stimuli. Over one billion people worldwide have hypertension (≥140 mm Hg systolic blood pressure or  ≥90 mm Hg diastolic blood pressure). Even small increments in blood pressure are associated with an increased risk of cardiovascular events. This genome-wide association study of systolic and diastolic blood pressure, which used a multi-stage design in 200,000 individuals of European descent, identified sixteen novel loci: six of these loci contain genes previously known or suspected to regulate blood pressure (GUCY1A3-GUCY1B3, NPR3-C5orf23, ADM, FURIN-FES, GOSR2, GNAS-EDN3); the other ten provide new clues to blood pressure physiology. A genetic risk score based on 29 genome-wide significant variants was associated with hypertension, left ventricular wall thickness, stroke and coronary artery disease, but not kidney disease or kidney function. We also observed associations with blood pressure in East Asian, South Asian and African ancestry individuals. Our findings provide new insights into the genetics and biology of blood pressure, and suggest potential novel therapeutic pathways for cardiovascular disease prevention

    Mining the human phenome using allelic scores that index biological intermediates

    Get PDF
    J. Kaprio ja M-L. Lokki työryhmien jäseniä.It is common practice in genome-wide association studies (GWAS) to focus on the relationship between disease risk and genetic variants one marker at a time. When relevant genes are identified it is often possible to implicate biological intermediates and pathways likely to be involved in disease aetiology. However, single genetic variants typically explain small amounts of disease risk. Our idea is to construct allelic scores that explain greater proportions of the variance in biological intermediates, and subsequently use these scores to data mine GWAS. To investigate the approach's properties, we indexed three biological intermediates where the results of large GWAS meta-analyses were available: body mass index, C-reactive protein and low density lipoprotein levels. We generated allelic scores in the Avon Longitudinal Study of Parents and Children, and in publicly available data from the first Wellcome Trust Case Control Consortium. We compared the explanatory ability of allelic scores in terms of their capacity to proxy for the intermediate of interest, and the extent to which they associated with disease. We found that allelic scores derived from known variants and allelic scores derived from hundreds of thousands of genetic markers explained significant portions of the variance in biological intermediates of interest, and many of these scores showed expected correlations with disease. Genome-wide allelic scores however tended to lack specificity suggesting that they should be used with caution and perhaps only to proxy biological intermediates for which there are no known individual variants. Power calculations confirm the feasibility of extending our strategy to the analysis of tens of thousands of molecular phenotypes in large genome-wide meta-analyses. We conclude that our method represents a simple way in which potentially tens of thousands of molecular phenotypes could be screened for causal relationships with disease without having to expensively measure these variables in individual disease collections.Peer reviewe

    Sleep Physiology, Circadian Rhythms, Waking Performance and the Development of Sleep-Wake Therapeutics

    Get PDF
    Disturbances of the sleep-wake cycle are highly prevalent and diverse. The aetiology of some sleep disorders, such as circadian rhythm sleep-wake disorders, is understood at the conceptual level of the circadian and homeostatic regulation of sleep and in part at a mechanistic level. Other disorders such as insomnia are more difficult to relate to sleep regulatory mechanisms or sleep physiology. To further our understanding of sleep-wake disorders and the potential of novel therapeutics, we discuss recent findings on the neurobiology of sleep regulation and circadian rhythmicity and its relation with the subjective experience of sleep and the quality of wakefulness. Sleep continuity and to some extent REM sleep emerge as determinants of subjective sleep quality and waking performance. The effects of insufficient sleep primarily concern subjective and objective sleepiness as well as vigilant attention, whereas performance on higher cognitive functions appears to be better preserved albeit at the cost of increased effort. We discuss age-related, sex and other trait-like differences in sleep physiology and sleep need and compare the effects of existing pharmacological and non-pharmacological sleep- and wake-promoting treatments. Successful non-pharmacological approaches such as sleep restriction for insomnia and light and melatonin treatment for circadian rhythm sleep disorders target processes such as sleep homeostasis or circadian rhythmicity. Most pharmacological treatments of sleep disorders target specific signalling pathways with no well-established role in either sleep homeostasis or circadian rhythmicity. Pharmacological sleep therapeutics induce changes in sleep structure and the sleep EEG which are specific to the mechanism of action of the drug. Sleep- and wake-promoting therapeutics often induce residual effects on waking performance and sleep, respectively. The need for novel therapeutic approaches continues not at least because of the societal demand to sleep and be awake out of synchrony with the natural light-dark cycle, the high prevalence of sleep-wake disturbances in mental health disorders and in neurodegeneration. Novel approaches, which will provide a more comprehensive description of sleep and allow for large-scale sleep and circadian physiology studies in the home environment, hold promise for continued improvement of therapeutics for disturbances of sleep, circadian rhythms and waking performance

    Meta-analysis identifies 13 new loci associated with waist-hip ratio and reveals sexual dimorphism in the genetic basis of fat distribution

    No full text
    corecore