7 research outputs found

    Conceptualizing Lennox-Gastaut syndrome as a secondary network epilepsy

    Get PDF
    Lennox-Gastaut Syndrome (LGS) is a category of severe, disabling epilepsy, characterized by frequent, treatment-resistant seizures, and cognitive impairment. Electroencephalography (EEG) shows characteristic generalized epileptic activity that is similar in those with lesional, genetic, or unknown causes, suggesting a common underlying mechanism. The condition typically begins in young children, leaving many severely disabled with recurring seizures throughout their adult life. Scalp EEG of the tonic seizures of LGS is characterized by a diffuse high-voltage slow transient evolving into generalized low-voltage fast activity, likely reflecting sustained fast neuronal firing over a wide cortical area. The typical interictal discharges (runs of slow spike-and-wave and bursts of generalized paroxysmal fast activity) also have a "generalized" electrical field, suggesting widespread cortical involvement. Recent brain mapping studies have begun to reveal which cortical and subcortical regions are active during these "generalized" discharges. In this critical review, we examine findings from neuroimaging studies of LGS and place these in the context of the electrical and clinical features of the syndrome. We suggest that LGS can be conceptualized as "secondary network epilepsy," where the epileptic activity is expressed through large-scale brain networks, particularly the attention and default-mode networks. Cortical lesions, when present, appear to chronically interact with these networks to produce network instability rather than triggering each individual epileptic discharge. LGS can be considered as "secondary" network epilepsy because the epileptic manifestations of the disorder reflect the networks being driven, rather than the specific initiating process. In this review, we begin with a summation of the clinical manifestations of LGS and what this has revealed about the underlying etiology of the condition. We then undertake a systematic review of the functional neuroimaging literature in LGS, which leads us to conclude that LGS can best be conceptualized as "secondary network epilepsy.

    Abnormal cognitive network interactions in Lennox-Gastaut syndrome: A potential mechanism of epileptic encephalopathy

    No full text
    OBJECTIVE: In patients with Lennox-Gastaut syndrome (LGS), recurrent epileptic activity is thought to contribute to impaired cognition (epileptic encephalopathy). Using concurrent electroencephalography-functional magnetic resonance imaging (EEG-fMRI), we recently showed that epileptiform discharges in LGS recruit large-scale networks that normally support key cognitive processes. In LGS, given that epileptic activity engages cognitive networks, and cognition is pervasively impaired, we hypothesized that cognitive network interactions in LGS are persistently abnormal. METHODS: We studied 15 LGS patients (mean age ± 1 standard deviation [SD] = 28.7 ± 10.6 years) and 17 healthy controls (mean age ± 1 SD = 27.6 ± 6.6 years) using task-free EEG-fMRI. Four networks of interest (default-mode, dorsal attention, executive control, and anterior salience) were defined using group-level independent components analysis (ICA). Functional connectivity within and between networks was determined for each subject, and then LGS network interactions were compared to network behavior in the control group. To test whether group differences were present in periods without scalp-detectable epileptiform discharges (i.e., persistent), we separately assessed discharge-affected and discharge-unaffected epochs in six patients with sufficient data for this analysis. RESULTS: In LGS, cognitive networks showed (1) reduced within-network integration, including weaker connectivity within the default-mode network, and (2) impaired between-network segregation, including stronger connectivity between the default-mode and dorsal attention networks. Abnormal interactions were present during fMRI periods with and without discharges, indicating that impaired network behavior may endure during periods without scalp-detectable epileptic activity. SIGNIFICANCE: In LGS, cognitive network interactions are persistently abnormal. Given that cognition typically worsens with the onset of LGS, and may improve after seizure control, our findings are consistent with the hypothesis that the epileptic process in LGS may initiate and perhaps sustain abnormal network behavior. We propose that epileptic encephalopathy may be a consequence of persistently disrupted cognitive network interactions

    Lennox-Gastaut syndrome and phenotype: Secondary network epilepsies

    No full text
    OBJECTIVE: Lennox-Gastaut syndrome (LGS) is a severe epilepsy phenotype with characteristic electroclinical features despite diverse etiologies. We previously found common cerebral networks involved during slow spike-and-wave (SSW) and generalized paroxysmal fast activity (PFA), characteristic interictal discharges. Some patients have a Lennox-Gastaut-like phenotype and cortical lesions. We wished to explore the interaction between cerebral networks and lesions in this group. METHODS: 3 Tesla electroencephalography-functional magnetic resonance imaging (EEG-fMRI) on six subjects with Lennox-Gastaut phenotype and a structural lesion. Timings of SSW and PFA events were used in an event-related fMRI analysis, and to estimate the time course of the hemodynamic response from key regions. RESULTS: (1) PFA-robust fMRI signal increases were observed in frontal and parietal association cortical areas, thalamus, and pons, with simultaneous increases in both "attention" and resting-state (default mode) networks, a highly unusual pattern. (2) SSW showed mixed increased and decreased fMRI activity, with preevent increases in association cortex and thalamus, and then prominent postevent reduction. There was decreased fMRI activity in primary cortical areas. (3) Lesion-variable fMRI increases were observed during PFA and SSW discharges. Three subjects who proceeded to lesionectomy are >1 year seizure-free. SIGNIFICANCE: We conceptualize Lennox-Gastaut phenotype as a being a network epilepsy, where key cerebral networks become autonomously unstable. Epileptiform activity in Lennox-Gastaut phenotype, and by implication in LGS, appears to be amplified and expressed through association cortical areas, possibly because the attention and default-mode networks are widely interconnected, fundamental brain networks. Seizure freedom in the subjects who proceeded to lesionectomy suggests that cortical lesions are able to establish and maintain this abnormal unstable network behavior. LGS may be considered a secondary network epilepsy because the unifying epileptic manifestations of the disorder, including PFA and SSW, reflect network dysfunction, rather than the specific initiating process

    Röntgenschäden

    No full text
    corecore